Solids
Rose-Hulman Institute of Technology (1972)
Texas Tech University (1975)
R.J. Marks II Class Notes
(1975)

$3-14-72(7455)$

counse swatyE

$015 b=T R E S$
MASNETHEREQHERTHE
$E L E T R E A B \quad E A D G E T H Q A$
$E R E E \quad E L E T R Q A \quad T M E Q_{Q} Y M E T A L S$

$$
\angle C D T-W A V E \quad(\sec +-C L \in D T
$$

\qquad

$$
P A R+1 \in(E+R T-N)
$$

$$
\begin{aligned}
& E=A x \\
& E^{2}=E N E Q G M \\
& h=\square A A C L \leq G S S T A N \\
& \text { f = GRECLEMCW } \\
& p=h / x=h 1 s \\
& \rho=M Q+5 N T L M \\
& n=h 2 m
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=W+M E L E A Q T H
\end{aligned}
$$

$3-5-73$ soun $18 x+2-407$
$S E M C O N O U L T O Q S$

$$
\begin{aligned}
\varepsilon_{2}-\frac{E_{e}}{} & \text { conducticn } \\
E_{y} & \text { GAEDEC }
\end{aligned}
$$

$$
e^{2}=2+v_{2}+p \in \cos
$$

$$
T 45 \quad 4 E M B L<-T B M \quad B A M C
$$

EOR TOLES HEAB TOR WE VALHACE GANA

$$
8(E)=\frac{1}{2 u^{2}}(-m)^{3}\left(E^{m}-a\right)^{1 / 2}
$$

EOR $T<0^{\circ} \mu^{2}$

$$
E x \leq E+\leq E
$$

$$
\begin{aligned}
& n=\sum_{E_{C}} \in(E) f(E) d \leq
\end{aligned}
$$

$$
\begin{aligned}
& =N_{C} P-E_{\infty}^{2}-\varepsilon_{0} / 1<T
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 T^{2}}\left(\frac{\left.2 m^{*}\right)^{2}}{\pi^{3 / 2}} \int_{0} E_{y}\left(E_{r}-E\right)^{k}\left[1-\frac{1}{e^{(E-E) / k T}+1}\right] d E\right. \\
& \frac{\frac{e^{(E-E / / k T}}{e^{(-E D / K T}+1}}{\frac{1}{1+e^{E E-E / R T}}}
\end{aligned}
$$

$$
\begin{aligned}
Y E L D N G & \left(2 \pi M^{W} k T\right)^{3 / 2} e^{-(E G-E v / K T} \\
p & =N_{x} e^{-\left(C E_{g}-E N / K T\right.}
\end{aligned}
$$

Intrinsic (RURE) SEMICONDUCTOR

$$
\begin{aligned}
& \operatorname{set} \quad N=p_{c}+E_{n}+\frac{3}{4} k+\ln \left(m_{2}\right) \\
& \quad \Rightarrow E_{c}=\frac{E_{j}}{2}
\end{aligned}
$$

QT=0.K, E, IS HALEWAY TWIXT BANOS

$$
\begin{aligned}
n p & =N_{c} N_{1} e^{-\left(E_{-}-E_{0}\right) / k T} \\
& =N_{c} N_{r} e^{-E_{g} / k T} \\
n=p & \left.=\sqrt{n_{p}}=N_{c} N_{N}\right)^{1 / 2} e^{-E_{g} / 2 k T} \\
\left(N_{0} N^{1 / 2}\right)^{1 / 2} & =2\left(\frac{2 \pi / T}{}\right)^{1 / 2}\left(m_{e}^{*} m_{*} *\right)^{3 / 4}
\end{aligned}
$$

Now $\quad \sigma=n e u_{0}+p+u_{0}$

$$
\begin{aligned}
& =\left[\left(N_{0} N_{V}\right)^{1 / 2} e^{-\operatorname{coskT}]}\right] \operatorname{ex}\left(u_{2} \alpha_{A}\right)
\end{aligned}
$$

\cos

$$
\text { ANQ } 5=h f_{e}
$$

$$
\text { ca to eg } 75 \text { (Tuss) }
$$

$$
(-3-12(w+0)
$$

FREE ELHCTEON

BOUNDRY CONDITIONS TELL US

- ZN STATES RER CAMD, WHERE N IS NUMBER OF CELLS TWIXT ATOMS
VEIOCITY OE ELECTRONS IN DERIODIC LATHCE

$$
\begin{aligned}
& V=d u d k \\
& E=h f=\frac{T}{T} L \Rightarrow V=\frac{1}{\hbar} \frac{d E}{d k}
\end{aligned}
$$

APRLY E EIELO

$$
\begin{aligned}
& \begin{array}{l}
\text { EaEE } \\
d=F d x=F V d t=\frac{f}{\pi}\left(\frac{d E}{d e}\right) d t
\end{array} \\
& d E=\frac{d E}{d E} d x \\
& E=\left(\frac{d E}{k}\right) d t=\frac{d E}{k} d K \\
& E=T H \frac{d L}{L}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{f}{h^{2}} \cdot \frac{5 z}{x^{2}}
\end{aligned}
$$

EEEECTG $\angle \mathrm{MA} 5$
$a \times \frac{\pi}{a}+\frac{5}{n}$

$$
\begin{aligned}
& E-b^{2} t=\quad-m \\
& \underset{\rightarrow}{+\infty}+n^{2}\left(\frac{x^{2}}{4}\right)^{2}
\end{aligned}
$$

FOR EREE FIECTRONS

$$
\begin{aligned}
& 5=4^{2}+2 m
\end{aligned}
$$

$$
\begin{aligned}
& m+4+4
\end{aligned}
$$

LPALT ETE ELLL BAMD

$$
\begin{aligned}
& \text { Kuy strend }
\end{aligned}
$$

$$
\left.\frac{46}{4 C O Q} \cdot 4 \leq 4,4 T O Q\right)
$$

$14 \leq T 12$
$A L E A--\angle E T A \quad+A V S$ $\operatorname{CONOLCTON~EANO}$
-awtwerithent =U4 $4 A E E L L C$
$3 \quad 2 H M=N \leq 1 O N A \angle C A \leq E$
 $\cos +0 \quad 59 \quad(50+1$

5-16-72 (HuEs)
NTRUSLC SEMIEGMNUGTOR

$$
n=p \Rightarrow\left\{\begin{array}{l}
E_{p}=E_{c}+E \\
n=a=(N \subset N+)^{7} e^{-E 8 / k T}
\end{array}\right.
$$

FERM ENERGY IS HALEWAY TWLXT HLOCEST KALENCE E ANO LOWEST CONOLCTIONE

EXTRINSIC (MPURITY) SENCOQNDUCTOR SILICON

BuE ITY
Pb, As

extrea-Leosely BOUNO ELECTRON IN BOMA. OREIT OE BLE A ADLUS
\square
$=$

$$
\begin{aligned}
& \text { LONAR STATES LIAY NOUE FE }
\end{aligned}
$$

FoR 2 PR \cap TYPE SEMEXNDLETGR
TRI-VALENT MMPURITY WITH SI ONE EXTRA pLAEL FOR O IN A GONA

$\mathrm{EQ} \longrightarrow$ ACCGPTOR GEVELS

AS TA A BT SOME E WHL JUMD Te
ACCERTOR LEVELS CREATMNG TOLES IN THE VALENEE BAND.

$$
\begin{aligned}
& (0)=0^{9} k \\
& n=N_{c} e^{-\left(E E_{e} \cdot E_{2}\right) K T}
\end{aligned}
$$

$$
\begin{aligned}
& n=N c e \\
& \ln n=\operatorname{dec} N_{c}+\frac{E f-E c}{R_{i}}
\end{aligned}
$$

$$
=\ln N_{c}+\frac{1}{\Gamma}\left(E_{-}-E=+\frac{B T}{N} \ln \left(\frac{N_{C}}{N_{C}}\right)\right)
$$

$$
=\ln N_{c}+\frac{1}{2} \ln (\sqrt{c})-E_{c} / 2 \ln
$$

$$
n=\left(N_{c} N_{0}\right)^{1 / 2} e^{-60 / B l e t}
$$

$$
\begin{aligned}
& p>n \Rightarrow p \text { TYPE } \\
& N_{0}=\text { DONOR LEWELS/VOD } \\
& N_{0}^{+}==10 N_{1} Z Q \text { LE HELS/VOL }\left(\cos e^{-1}\right) \\
& n=\mathrm{N}_{0}{ }^{+} \\
& N_{c} e^{-\left(E_{c}-E_{e}\right) / L_{T}}=N_{0}[1-f(E)]
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF }\left(E_{F}-E_{2}\right)>4 / E T \text { COONOR LELEL NOT TO } \\
& \text { CLOSE TO FERMI ENEREY) } \\
& N_{c} e^{-\left(E_{c}-E_{1}\right)^{2} / k^{T}}=N_{0} e^{\left(E E_{2-E}^{*}\right) / k T} \\
& \ln N_{0}+E_{t}-E C / K T=\ln _{0} N_{0}+E_{2}-E_{B} /_{H} \\
& E_{f}=E_{\mathrm{L}}+E_{0}+k T \operatorname{Ln}\left(N_{0} N_{0}\right)
\end{aligned}
$$

$$
O=n e L \in
$$

HALL EEEECF

$$
\begin{aligned}
& R_{H}=\varepsilon_{Y_{1}}=\frac{1}{R_{Q}} S_{0}=K_{L} \\
& \infty=\frac{n e q}{n+m}=A Q L \\
& L_{6}=e \mathrm{G} / \mathrm{me}=0 \text { UB } \\
& E_{Y}=E_{j}=L_{j}=\angle n e_{j}=\angle Q
\end{aligned}
$$

MEASURE Ey $\& \in E B^{\circ}$ (HALHMOgMMTY)

Enol PINTRIN

EXTRIN
$1 / 7$

$$
\begin{gathered}
5-17-72(w e p) \\
n-T y p t \\
p-T y e \\
n-t-p \varepsilon
\end{gathered}
$$

$$
p-T+E
$$

BARRIEA FOR DIERUSION TO LE T

GORWARD

$$
e-p-y p
$$

REVERSE Y ROLARITY TOO

$\operatorname{con} 2+2 \tan$

$$
Y A<M C E
$$

HALL EFEEET

MAH THUS DETERMME NALARITY GAREIERS.
suefos: $p=0 \quad n \neq 0$

$$
E=q V \times \vec{B}=q V B=\varepsilon_{r} b=V B e
$$

$$
\varepsilon_{y}-v a=4 a
$$

HALL COEFEICIENT: $\quad \therefore E_{4 / T B}$

$$
\begin{aligned}
J & =\frac{1}{A} \\
\Rightarrow R_{H} & =\frac{\frac{4 B}{1 B}=\frac{n e+B}{n E} \quad(n e v=J)}{n E}
\end{aligned}
$$

THUS MEASURING RH YIELOS 傦
FOR P MATERAL $Q_{+}=\frac{1}{\text { Pa }}$
WHEN BOTH TYEGS OECARELERS ARE MMPORYANT

$$
R_{+}=\frac{1}{\rho}\left(\frac{\beta \mu_{n}^{2}-n \mu_{e}^{2}}{\left[\mu_{n}+2 \mu_{e}\right]^{2}}\right)
$$

$$
\begin{aligned}
& \sigma=n e_{p u s}+\rho e_{\text {ph }} \\
& \Rightarrow \text { Ka MophuITY }
\end{aligned}
$$

BANDS IU THREE RMENSIONS
oubic

BRACGS AU FOR EURST ZONE:

$$
20 \sin \theta=\lambda
$$

$$
\frac{\pi}{a \pi}=\frac{2 \pi}{4}=6
$$

EREE ELECTRON

$$
M E T A L+N O E G A S \quad\left(E_{a}>E_{b}\right)
$$

SEM/CONOUCTQR Eb<EQ

5-8-72 (MON)
ONE DMENSION

w THREE RUMCusions
CUBIC LATTICE

$$
\begin{aligned}
& v=\frac{5}{5 h} \\
& \frac{n}{m-x}=\frac{1}{5}=\frac{5-E}{b^{2}} \\
& o=\frac{n e^{2 x}}{m^{-k}}
\end{aligned}
$$

$$
\begin{aligned}
& =\square D_{R} \\
& Q_{x}=b_{n x} F_{x}-\frac{1}{n_{x Y}^{*}} E_{x}+\frac{1}{n_{x}^{2}} E_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n}{n} \frac{1}{x}=\frac{1}{x^{2}} \frac{2^{2}}{s^{2} B g}
\end{aligned}
$$

FREE ELGEMRONS

$$
\begin{aligned}
& E=\frac{z^{2}}{\frac{1}{1}}=t^{2} t^{2} k^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{E}=\frac{n}{2 \pi}+L_{2}^{2} \\
& =\pi^{2}\left(Z_{x}^{2}+k_{4}^{2}+<_{a}^{2} Z_{2 m}\right. \\
& \left(\frac{1}{m x x}\right)=\frac{1}{t^{2}} \frac{r^{2}}{m}=\frac{1}{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { THEN: } \\
& a_{x}=\frac{1}{m} F_{x} a_{y}=\frac{b}{m} F_{y} \cdot a_{z}=\frac{1}{m} F_{z}
\end{aligned}
$$

CYCLOTRON RESONANCE FREQ

$$
B+E_{r f}
$$

ELECTRON MOUE ODWARDD WITH ENERGY NEAR ER (EERMIENEAGY)
WAUEGGUME

$$
\begin{gathered}
E_{o m+R=}=B Q v=m \times \omega^{2} n \\
L_{C}=B q / m^{+}
\end{gathered}
$$

IE RAQIO FREQUENCY MATCHES GK, ItEM ONE COULD GET A LARGE AMOUNT T DE ABSORBTION OF ENERGI FROM rf.

CHANGE B AND LOOK FOR LARGLE

$$
\begin{aligned}
& \text { RESONANCE ABSORBTION OE E } \\
& \text { Aby A E E SENDUETICA SEMICONOOCTOR } \\
& \text { HOLEENCAR GAZDA } \\
& \text { BEECSOME ARTICULAK } \\
& k=\frac{5 a}{a}=a=4+2 \\
& \text { - } \operatorname{ctarEs} \text { N FUCET BAND }
\end{aligned}
$$

W THREE OMENSLQNS

$$
\begin{aligned}
& \text { H: } L=N a-H \\
& \psi(x) \quad \psi(x+\sigma) \\
& k_{x}=\frac{T_{x}}{n Q_{x}} \quad n_{x}= \pm 1_{0}+2_{2} \\
& k_{y}=\tan \quad n_{y}= \\
& r_{z}=2 \pi n \geq \sqrt{2} \quad n_{z}=
\end{aligned}
$$

NOMBER HE STATESCW 2 STATES LOOLNT COMSEN)

$$
N^{3}=N D, ~ O F ~ \angle N T C E L S ~ N L A T T C E
$$

$5-9-72$ CuEs

 $f(E)=6 e^{2}$ fou motes

$$
\begin{aligned}
& \text { VOLUME OF ELRET TONE IN } k \text { SPACE } \\
& n=\left(\frac{4 \pi}{4}\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (NK SRACE) }
\end{aligned}
$$

$$
d E=\left|\nabla x E l d E_{n}=1 G R A R_{n} E\right| d L_{n} \Rightarrow d R_{n}-\frac{d E}{\Delta E}
$$

 $d R_{n} \mathrm{O} D=T O T A L$ VOLUME TWUTE AKNO EYDE

$$
\begin{aligned}
& \text { EXAMPGE-EREZELECTRQA } \\
& E=\frac{1}{5}\left(L^{2}+L^{2}+x^{2}\right) \\
& \nabla L=S E X+5 \frac{5}{5}+2 E L \\
& =\frac{5}{2}\left(2 r_{y}^{2}+2 L_{y}^{2}+2<-\frac{1}{b}\right) \\
& =h^{2} R^{3} \leq\left|D_{k} E\right|=h^{2} / C \leq L \leq N O T A E C T O R
\end{aligned}
$$

$$
\begin{aligned}
& \pm 6(E) d E \quad \frac{2}{s^{2}} \frac{d L^{2}}{h^{2}}\left(4 \pi+k^{2}\right)
\end{aligned}
$$

THE OREMOLSY $\quad \angle E Q U E D \quad A N S W E Q$

SOME DTHES EESULTE

NEAR THE GOTTQM OT THE GAND.

NEAR TUE TOPGOTEE $\quad \angle A M L$

$$
G^{G}(E)=\frac{1}{24}\left(2 x^{4}\right)^{3 / 2}\left(E^{4}-E^{2}\right.
$$

 $0 丩 \pm Y \quad \subset A \leq \leq \quad \triangle T E Q E \leq Y$

 YIELDING THALE ELGG BANDS. TAD GCARATEES $1 T 1 \leq A$ METAL
GOOP CONDUCTOS \pm CHANGES $54 A T E \leq A \leq 12 Y$

CALCNUM CONALEAT MEVADS: 2 VA E ENE ELECTRONS - AS MANY $E L E C T V O A S A \leq S T A T E S$ SINCE HTH METAL, TACST $A A L E$ UANO QVERLAP

 $m * 1 S$ BARGE $\leq N A R E R O L Q Q N C \quad$ IS
 TO A CCELERETE
 HARDTA GRHOGE GAD. TLLEACQ EAPTY HAND SEPAAATED BL EE

GERMANIUM- SIMLLAR TO DIANQND BUT

 BAND, NUMAELQ OLEEGECTVEN SANO

以NOCK OUT ECECTROX ERCNA WHEN
 $A N D E M+5 \quad x-R A Y O$

NORMAL RESTSTAACE

$$
\text { Io } \because a E S L O U A L R E S U S M A C E, D U E
$$

TO LATTICE DEEECTS E MPLRLTHES
p@ROQMTHMDERATVLS \& ABQNE
IS DEPENDENT ON LATTHCE VIBRATIONS

$$
\because \text { FOR SUPER-CONDUETNVITY WGTAUST }
$$

$$
\therefore D O A W A Y \text { WTTH THE PEOBLEM }
$$ OF DEEEOTS AND NAPLNMTLES

$$
5-10-71 \quad(w \leq Q)
$$

NOMMAR RESISPHUTY (MEMABG)

$p \mid \quad\left(\operatorname{tg}^{\circ} \quad w \operatorname{sen}\right)$

T_{G}^{T}
F-
I 23 SUPERCONDOCTRE ELEMENTS G HUNDREOS OFALLOYS
Pb (LEAD) \qquad
BEST SUREREONDUCTORS ARE PQCVEST
NORMAL CONULETORE

ARRLE MAENETIC ELELD AND TARE DOWNWABD THRU IE

- SUREAGE CURREAT SET UR TWAT CANCECS

EIEV NSIOE THE SUEER CONAUCTOR (MEISNER SNO
\qquad

(

 NGLLVEME
q^{s}
a
 $-\infty \quad \cup P T C \quad Q^{-4} C M$

ELECTRON GEAM

SAME TG TATENSITH $o=\angle \operatorname{GAT}$ EHRCL
WAY ROTERHAE A EROM AGOVE GAN ALTO DETERMBNE B (MSNONTMA) ACAN: $P=h X X, E=P 2 m+V_{Q}$

ROFENTAL EAEAEX RLAC NATLLE OE WAKE-PARCLE
(1) but : $E=h \neq p=h k \quad k=2 \pi$
$\Rightarrow M A T E N, \quad p=7 k \quad E=\rho^{2} / 2 n$
 H LI MCOLSMQLETO TMGLTANEOGSLH
 ANL FHE CERNESEENRLNE MAMENTUM COORDNATE YO ANW GREATER PREGISIGN $T H A N: \quad(\Delta p, \backslash \Delta X) \geq h$
 POLNTIN SPA G G CAM EE REAL OR COMOLEXJ THE PRQEAQLLTE QE EMONGG A PARTICAb HM VALUME ELKMENT dY AT PLSMTLON $x, y, z \quad \leq=\operatorname{coc}=|\psi(x, z, z)|^{2} d x$

PRORABMITY OE QENNG NN SOME ENNIE VOLUNE K:

$$
D=\int_{p}|y|{ }^{2} d p
$$

Ex
SCHROE OMAEER EQUATHOA (CDNEMVAYIEN OE E NOR WAM)

$$
-\frac{h^{2}}{h^{2}} \nabla^{2}+v \psi=E \psi
$$

$$
\begin{aligned}
& v=\frac{1}{2} k x^{2} \\
& \Rightarrow \frac{-\pi}{2 m} \frac{k}{2}^{2} k^{2}+\frac{1}{2} k x^{2} y=E \psi
\end{aligned}
$$

$$
\begin{array}{rr}
5 T A T E 1 & 4 \\
2 & y_{2}-\quad E
\end{array}
$$

Eve.

$$
\begin{aligned}
& \text { ENERGY S QLANTILED } \\
& C_{R O}=(2 n=1 \quad h f) \quad n=2,3 \\
& \text { [ATOMAUTION FOR EVO:ERGOT] }
\end{aligned}
$$

$3-15-12$ (wed
Leve: fo: $2-2 z$ mores
a wave Aptrab b owabur

 YELONG THE ELWQN NG RESUZTS:

$$
E=\frac{-E^{2}}{n^{2}} \quad n=1,2,3, \ldots
$$

ERRNCLRE QUANTUM LKYMEER

$$
\begin{aligned}
& E_{-\infty}=\square \\
& E_{x}=0
\end{aligned}
$$

$E=c$

ECTHAKE SAME E RUT HAVE DUEEERUNT \&

$$
L \geq 1=\sqrt{Q C L+\infty} \hbar ; \quad x-1+1, n+2, n=3, \ldots
$$

suppos $=\bar{n}=2 \quad \operatorname{TaCN} \quad L^{2}+0$

$$
\begin{aligned}
& \Rightarrow \Delta \sqrt{2} \hbar \text { or } 12^{2}=0 \\
& 2=0 \leq 5 \text { ELECTPON } \\
& \ell=1 \Rightarrow p \text { Evectron } \\
& \ell \geq 2 \leq d \text { ELEsTRan } \\
& k=3 \rightarrow+\text { ELETMON }
\end{aligned}
$$

 $=\sqrt{34} \pi)$
W PRESEMGE OE MAGMETVG EREAG DMSY CERTAM DREETIOMS AbLOLMECK L AMQ = VECTGK:
\qquad

PAML-EXCLUSION PRMCHRLE (APDKES TO ORO LALE MTEGEAL SPUN PARTLELESD:NO TMO EXECTRONS COAR HALE NTEGRAL - PN PARTICLES IN TGE SAME (QUANTUM MECHANICAZSYSTEM) ATOM MAY HAVE VDENTICAL SETS DE QCANTVM

Be $\quad 1 s^{2} 25^{2}$

n: Enercy
L: OREITAL ANGLLEG MOMENYUM
m: 三 ONEETIONAL COMPONEAT OF $\frac{2}{2}$
$m_{\text {: }}$ Z COMPONENT OE S
$s: \pm \frac{1}{2}$

CRYSTALLINE SOLDSG-RECWLAR ATOM ARRANGEMENTS AMORPHONE SOLVSEREANDOA GQLMMERS TCANALIELI)

EgRCES TuLXT ATOAS

\rightarrow COULOME ATTRACTION EFMONS
$\cdots \operatorname{taconc}$ ECRET
HLCH MELTNG PCNT $\angle O W E \angle E C T R \angle A L-T H E R M A L \quad C O N D C E T I O N$
E) CaVAEUT EOQEE (SHAREQEEAGCTEDNS)
(

$$
E x=E \leq E N E C A T H E C H A R C E
$$

60 Ta metary fall

\qquad

$$
\begin{aligned}
& a=b=c \\
& a=b=x=90^{0}
\end{aligned}
$$

$$
F P O N T=A C E
$$

 QOCP CEUTEQED PCSITION \quad S $C=\frac{1}{5}=1$

$$
a d i \operatorname{coc}\left(\frac{1}{2}+\frac{4}{4}\right)=\left(1,1, \frac{2}{4}\right)
$$

\%

$p Q M+V=\quad C E L D=d=\sqrt{L^{2}+2}=2 a$

SOLVE EQU Q (LATTME CCNEFANT)

CCOR CENTERED CUBLE

$$
\text { () ASEDME } f \in S T D E A\} \text {, } S(O O) \rightarrow C A L C L L A T E \text { a }
$$ -SEE LE OTAER PEAKS EIT 以NTA THS VALUE of a $4 N$ SoMi $h k \mathbb{R}$

 CALCULATE O, SEE IFOTHER PEAKS EIT
 CALCULATE OWSEE IF CTHED PLAKSEFT
$3 \cdot 17-72(\mathrm{Fa})$
FCOCES TAXT Aromu

2) CaLABLDTCEAHCLY TTQCAC
 QE THE MATERQAL
 VERY WGAK DMMOLE ATTRACTLVE GRGCE
 $N E A \& Q^{\circ} K$

$E Q Q \leq T A L \leq T Q L=T \angle Q E$

SPACE LATYIOE: REGUCAR (REAEATING)
AREANGEMENT OE DGMNE SUEW TMAT THE
$A R E A N G E A E N T O E A T O M S \quad A B E U M$ US $A C L$ POINTH $H C \quad 1 C N T 1 C A L$

TQ 6 ET PROM QNE bATTICE DQINTTTCANY

$$
\begin{aligned}
& \text { OTMEN LATTIGE } O D L N T \\
& \pm=M \cdot a+M, b+m a b
\end{aligned}
$$

 THE EDGES LS CABGED A "UNMT CELL

PRMMTIUE UNIT CELGWTHAT CELY HALLNG SMALLEST POSSMQLE VOLUME (LATTIOE POMTS bNLY © COMNERS)

SINGLE CRYSTALZ LATTICE CONTINUES ERCM ONE ELGE OE CRYSTAL TOTGE OTMER WUTH NO RREAKS

SPACE LATTLCE SYMMETRY
(1)MLRRDR PLANE
(2) ROTATLON SYMMETRY (m- GCLD)

NE ULE MUNEER QE EGUAK ANGLES OE
ROTATLON TC GET BAGLE TO ORIGLAAL CONE GUQATHON (EACMOETHE EQUAL RGUATLONS MUST YIELDTHE SAME CONFIGUMATION AS OE GINAL)

CGGIC cRYSTALS: $4.3=C \angle O$ ROTATION A x Es

MLLEN NMOEES

(2) $R=-1$ DRCOAG
(3) Cb-ARERACTLCNE
co tal mannay pe 6

GO TH TUESDAK PRI3
$3-22-21 \quad$ WとO
pp \& 2.8
FuL

Theraisa
 eastarins farcai fzax
bugraticns

con ancr faRces GNMATARACGNT ATOAS
$P_{n}=Q\left(L_{n+1}-L_{n}\right)-B\left(\mu_{n}+\mu_{n}\right)$

$$
x_{2}=e^{k+b^{2} / k d} \quad s \quad u=2 \pi f ; 10=\frac{2 \pi}{4}
$$

$$
\begin{aligned}
& L 2,+L_{1} e^{i(4, z-1 / n t}
\end{aligned}
$$

$$
\begin{aligned}
& =-4 \cos ^{2 k} \\
& \Rightarrow c^{2} M=-4 B A A^{2} \frac{K Q}{2} \Rightarrow \omega^{2}=\sqrt{\frac{4 B}{M}} \operatorname{LN} \frac{K Q}{2}
\end{aligned}
$$

reLATVOM o 0 t \pm

SWCEE CDUQ WALES:

$$
a_{n}+s=\sec +A ; \quad v_{p}=f \lambda=\quad L_{k}
$$

SPEER OE REATES ESR 4CHER FMECUENCIES TRAMSMISSND OE EMERCY EAQN DNE DONT

TO ANOTEER: GRODP V bocMr

$$
v_{0}=d=
$$

Two.0.E.S

$\omega^{2}=\beta\left(\frac{n}{\omega}+\frac{1}{M}\right) \pm B\left[\left(\frac{m}{m}+\frac{1}{M}\right)^{2}-4 \mu M M=\right.$

ToNTC CRYSYALS
AP LATTICE POTGYTMALEDGRGY: S La NaCl Na< Cla

 \cdots Sapictarach ME

$$
W=2 N K^{2}
$$

$$
E_{a}=4 \frac{9}{4} e_{0}
$$

1ON $41(\operatorname{SODHA}$ IN CENTER)

WELUQLNO ONLY TAAT PART OE THE ATOM HELAE COME?

CALLED EVIEN METUQA OT CUTMINC OFE
THE SERUS

$$
\begin{aligned}
& E_{e}=-e^{\frac{1}{2}} \quad\left(4-\frac{12}{2}+e^{4}=\right)
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=M O R E L N E \text { CONSTANT }=1.747 \text { Ger NaCL }
\end{aligned}
$$

BN W EXCLUSION PQNCLPLE PEEULSION
WE WOMRY ABOUT NEACEST MEIGMBOQ ONLY

$$
E=\cdots A / r^{n}
$$

$\operatorname{TOTACDE:} E=4 \pi E_{B}+\frac{A}{R}$
RECALL N ION PARS INWMOLE CRTSTAL (2NMONS)
ToTAG ENERGE

$$
\left.\begin{array}{ll}
E N G C R \\
E-N\left[\frac{-Q}{4 \pi} R\right.
\end{array} \quad+\frac{A}{R}\right]
$$

$$
\begin{aligned}
& A=\alpha e^{2} R e^{n-2}<4 T<n
\end{aligned}
$$

$$
\begin{aligned}
& Q=\square=R, R=R \\
& \Rightarrow E_{T_{0}}=\frac{-N e^{2}}{4 t_{a}+e} \quad\left[1-\frac{1}{\square}\right]
\end{aligned}
$$

$$
\begin{aligned}
& K=-\quad-\frac{d p}{d p} \\
& d w=p d y=d E \\
& \frac{d p}{d p}=-d^{2} E / d u^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =d E d^{2} R+d^{2} R^{2}\left(\frac{d R}{d}\right)^{2}(2)
\end{aligned}
$$

FROM (C) AND Q $\quad=$

$$
\begin{aligned}
& \frac{L_{8}}{L_{0}}=V^{2}\left[\frac{d b^{2}}{d R-\frac{d}{2}}+\frac{d r^{2}}{d R^{2}}(d \beta)^{2}\right] \\
& =v g^{2}=[d r]^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d v}{d u}=8 c N R^{2} \\
& \frac{d R}{1 G_{0}}=C N Q^{3} \frac{d^{2}}{d R^{2}}\left[a e^{2} N^{2} Q e^{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{R_{0}}=\frac{1}{q C_{0}}\left[\frac{N \alpha e^{2}}{4 E_{0}}\left(\frac{n+1}{R_{e}}\right)\right] \\
& =3 \operatorname{tec}^{2} \operatorname{cn}^{2}
\end{aligned}
$$

a S WMAT UE L SOLVE EOR; AHBOTHER CONSTANTS WLL L MNOW

Go To weydesinay, pall
$3-24-2 Z(E G D)$ TEST ON MONDAY CsEC $2=4,71$
DLATONLE WATTICE

$$
Q=f o r c E \operatorname{constant}
$$

monatonic latmice
$M \quad M \quad \begin{aligned} & M\end{aligned} M$

$$
b=2 \pi t
$$

3 vibratina durectiens in 3-D

$$
v_{p n}=4 / k
$$

MONATONIG L ATTVCE-LENETURLMAL WIGRATIONS

$$
\begin{aligned}
& \Rightarrow k l=k N a=\pi, 2 t, 3 \pi, \\
& \Rightarrow 1<=\frac{k-2 \pi \lambda}{2} \frac{3 \pi}{2}=A<2-L N T \\
& \left(a<=A^{4},<=0\right. \\
& \Rightarrow \quad 1=\left.\right|_{0} ^{\infty} \\
& \text { avcereme is ANO W! }
\end{aligned}
$$

REMEW EQE TES

(3) CRYSTAL STMELEPURE
 LATTMEE EONSTANS
() MLGER MMOLCES
(s) SpAcNE TWUXT CLANES
 $L N T$ CELL, LATTHEE CONSTANS

(1) RQTENTIAL ENEPQY

C2 CAMPRESELBLITPY ANDN
(3) ELASTHE HANE (G) GREQ WAYELENGTA WAKESEEEQS
b) insuarea aresea butaN

CISTANAING WAVE MDOES

$3-29-72$ (WGO) $00 \times 4: 120-32$

SPECECCHEAT OF SOLM

$$
\begin{aligned}
& C=S Q \quad \text { (eER MED } \\
& C_{x}=S Q_{1}=\frac{5 Q}{S}
\end{aligned}
$$

$$
c_{x}=3 \Omega
$$

$$
c_{V} \left\lvert\, \frac{2 e}{-b E^{2} t_{t}+N T}\right.
$$

$$
\begin{aligned}
& \varepsilon=\left(n+\frac{1}{2}\right) n+\quad ; n=0,2,4+5 \\
& \text { ENSTEMMOLELOE SOLMO }
\end{aligned}
$$

$$
\begin{aligned}
& A-x e^{-E b / K}
\end{aligned}
$$

$$
\begin{aligned}
& E=x=-h \neq k
\end{aligned}
$$

$$
\begin{aligned}
& L E T \quad y=1+e^{x}+e^{2 x+} e^{8 x+T}=\Delta E N=1-C+1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d u}{d x}=e^{x}+2 e^{2 x}+3 e^{3 x} \ldots, \ldots \text { Numesatoa }= \\
& e^{x}\left(T e^{x}\right)=+e^{x x}\left(1-e^{+x}\right)^{x} \\
& \bar{E}=\frac{1}{2} h f+h h^{2}\left(1-e^{+x} f^{-2}\left(+e^{x}\right.\right. \\
& =\frac{1}{2} h f+\frac{e^{x}\left(\int^{-e^{x}}\right)^{-2}}{e^{-2}} h+ \\
& \therefore E=\frac{1}{2} h f+h f\left[\frac{e^{x}}{-e^{x}}\right]=\frac{1}{2} h+h f\left[e^{-x}\right] \\
& =\frac{1}{2} h f+h f\left(e^{\text {hb/kT}}-1\right)
\end{aligned}
$$

total energat

$$
\begin{aligned}
& c_{V}=\frac{K_{T} T}{\delta T}=3 N f h E\left(e^{n \notin / k T-1}\right)^{-1} \\
& =3 N f h\left[(-1)\left(e^{h \varnothing / k T}-1\right)^{2} e^{h \theta / k T}\left(-\frac{h t}{h t}=\right)\right] \\
& =3 N\left[\left(\frac{h f}{h}\right)^{2} e^{h t / k T} /\left(e^{h f / k T}-1\right)^{2}\right]
\end{aligned}
$$

FOR 1 MOAE, $\mathrm{Nan}=\mathrm{N}_{\mathrm{g}}=$ INACARRS's

$$
\left.\Rightarrow c_{r}=3 R\left[\left(\frac{n_{2}}{k_{2}}\right)^{2} e^{n / k T /\left(e^{n+1} T\right.}-1\right)^{2}\right]
$$

As $T-00 ; e^{n+1 / k T} \sim 1$

DEBYE MODE

$$
2 \quad M 4 \times v=4 \quad 0<5 T Q u p, 0 a
$$

 $\operatorname{CONTMLUCS\quad MELLCNL}$

$$
\begin{aligned}
& L=0 \frac{1}{2} ; n-12,3 \ldots \\
& f=y / \lambda
\end{aligned}
$$

bIAGSUATIION: ALL WAVES TRAKEL CO SAME

$$
=0 \leq 0
$$

$$
\begin{aligned}
& \because C+2 s+1 t
\end{aligned}
$$

TUE $5(2-2+27) \quad p p+3-123$
SPECIFIC HTS

MOMENTUM SLACE

IE CARMELC IS NOT ERYE:
 boxes of $\quad d p_{x} d p_{\mathrm{w}} d \rho_{y} d x d y d=$

IN PHASE SMGE WUG GUE ENERCY DISTRIQLYQN

$N=T O T H L$ PARTUELES
$E Q U A \angle 1 Q R U M \quad B \leq T \angle C U T O N=M O S T O Q Q Q A B L E$ ALSTRLELTICNOE QTS AMONG CELGS
$E X A M C L E: \quad 2 \mathrm{BOXES} ; 4 P A R T U C L E S$
a)ALC 4 M $A B E C L$
$(0 N E-\infty A Y)$
$b+3 \mathrm{~N} A, 1 / N=$
(4 wAYs)
$\operatorname{cyN} \mathrm{NA}_{N 1} 2 \mathrm{~N}$

$$
W A Y S=\quad N!N_{1}+N_{2}+N_{y}
$$

$A M O N G \quad C E L L S$ i $5: \quad$ P MAY

GEGRANGES MULTIPLIERS:
No $\alpha E^{E G / D t}$: MAXWEL-BOLTZMAN DISTRIQOTIRN $E_{7} E_{Z_{2}} E_{3} \cdot \operatorname{OLSCREE}$ ENERGLSS (QUANTUM)
$N_{t}=4$ PAPTCLUS WHH ENERGY E: CONTMLUEUS ENERGY DLSTHUQLTHON

BOXE S WAVE "VOLMAE" NN PHASE SPACE:
$d \Omega=d p x d p+d p=d x d y d=$

EXAMPLE: CLASSICAL VIRRATING ATOM=NO E RESTELTHOLS

FRACTION DE THE PARTCLES a P (pxpxpa)
AND PCSITION $X, Y, Z \quad N \quad N H A S E \operatorname{SPACE} \quad N d L L$ $\equiv \frac{d N}{N}=e^{-E / K T} d \Omega / \int-\infty e^{-E / R_{T}} d a^{\infty}$

$$
\begin{aligned}
& =\frac{p_{x}^{2}+p r^{2}+p^{2}+\frac{d}{2}}{2 m} B\left(x^{2}+y^{2}+z^{2}\right) \\
& E=\frac{\int E d N}{N}=\frac{\int E e^{-T / K T} d J}{\int e^{-E T A D} D}=3 K T
\end{aligned}
$$

TOTAL E ON N viERATINEATOMS

$$
V=3 A<T
$$

FOR 3 CI AMS MOLE

$$
\begin{aligned}
& U=3 A R T=3 R T \\
& N_{0}=A N A G A D R O S \quad A \cup M Q E A \\
& A=1 Q E A Z \quad C A S E O N G T A N T
\end{aligned}
$$

spectele HTRPEA MoLE

$$
C_{y}=\left.\frac{6 Q}{S}\right|_{y}=\left.\frac{S U}{T}\right|_{y}=z Q=5.9 C C A C L E S L M C E Q B
$$

VAQATBNG GARTLCLE CAN HANE GNERGIES

$$
E=\left(n+\frac{1}{2}\right) h f \quad ; n=0,2,3,0
$$

TO WED (PQ $/ V$)

4-3-72 (MON)

() EMSTEU HoDEb

(2) OEEYE MOQEL

$$
\text { FREQUENCIES } 4 Q E C O N T H N O C S \text { MEOLUM }
$$

STANDING WAVE EREQUSNCHES

$$
x=0
$$

$$
x=-2
$$

$$
\frac{S^{x} U}{S x}=\frac{S^{2} U}{S} Y+\frac{S^{2} U}{S z}=\frac{B}{V} \frac{S^{2}}{S} V^{2}
$$

$$
\operatorname{Ain}\left(\frac{n+\pi z}{a}\right) \operatorname{coc}_{2} 2 \pi\left(f+a_{x} a_{4} n_{2}=1,2\right.
$$

PLUCGINE GACL BMTOME A

STANLNE WAVE EREQUENCHES

$$
f=\frac{4}{2} \sqrt{P_{r}+r^{2}-a^{2}}
$$

STAMQNE UGVE MQDE

MCUN G FGOM ORUNM $+T E E E \leq G B$

$$
\begin{aligned}
& n \equiv \\
& r^{2}=n n^{2}+n+n y^{2} \\
& \Rightarrow R=2 L^{2} \\
& d R=\frac{2 L}{V} d-C
\end{aligned}
$$

WBL GIVE A SPHERE SHEGG

wif
THE TRANSVERSE VES V/ VELCETY YT

$$
\begin{aligned}
& \Rightarrow d N=4 H^{2}\left(\frac{2}{V_{3}}+\frac{1}{N_{2}}\right) f^{2} d \\
& 3 N=\rho_{\infty}^{f} d N
\end{aligned}
$$

$$
\begin{aligned}
& \therefore A_{a}=\left[\frac{9}{4 T} \frac{N}{\frac{1}{5}}\left(\frac{2}{V_{2}}+\frac{1}{L_{2}}\right)^{-1}\right]^{1 / 3}
\end{aligned}
$$

 ENEMEQ OE ELNSTENAS OSGLZATRES:

$$
\begin{aligned}
& =\frac{h t}{e^{h / t}-1} \\
& \text { ToTAL } \quad N E H Q: \quad U=\int_{0}^{P a} E d N \\
& =\int e^{2}\left(\frac{h+}{e^{h+m}}-1\right) d N \\
& U=4 H \quad L\left(\frac{2}{V^{2}}+\frac{1}{U^{2}}\right) \quad f_{0} \frac{f_{0} e^{2} d t}{e^{2}-1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 4 N\left(\frac{1}{n+0}\right)^{3} k \operatorname{La}^{2} x^{3}-1 x=1=2
\end{aligned}
$$

$$
\begin{aligned}
& \because 3 N K T=3 R T M 0 L S \\
& \left.\rightarrow c r^{-} \leqslant \square\right]=31 \$
\end{aligned}
$$

$$
\text { acAre vAs bawo vT: } C H 00 s=
$$

QOTO MARE CURUE EIT

$$
\text { THE EXPERMENT } \theta_{R}
$$

THEGGN on THE suestana)

sPECIFIC heatic,
(1) insulatoes: $C_{4}=\left(\frac{G U n}{T}\right)_{0}$

 $h^{f} f=$ PMONON

$$
P=\pi k p \ll \frac{2 \pi}{4} ; p=R=\operatorname{Ren} \text { vasoATION }
$$

$$
\begin{aligned}
& \text { LOW TEMP: } \\
& U=a-\left(\frac{h}{h} f_{0}\right)^{3} k T \int_{0}^{x_{0}} e^{e^{3} d x} \\
& \operatorname{hom} T+516+x_{0}=\infty \\
& \begin{array}{c}
\Rightarrow U \cong a p\left(\frac{4 t}{1 f}\right)^{3} k T L_{0} \frac{x^{3 d x}}{e^{x-1}} \\
L_{0} e^{x d x}=\pi^{4} / 15
\end{array} \\
& \therefore U \equiv \frac{3}{5} \pi^{2} 4 N T\left(\frac{T^{2}}{e^{3}}\right)^{k} \quad \exists \theta_{0}=\frac{h f_{a}}{k} \\
& \theta_{0}=D E B Y E \text { TEMREDATURE }
\end{aligned}
$$

DIELECTRLES

b)

IONC DOLARLEAPLON?
C) ORIENTATIONALDQSAEISATION (REORIENTATION watera:

04
 CO LEEMAMENT o. Ros m on E

DEFINITIONS:
(1) DMOLE MOMENT; $\vec{p}=q-\frac{2}{2}$

(3)
3)DISDLACEMENT:

$$
\begin{array}{ll}
\vec{D}=e_{e} E+\vec{P} & (M K S) \\
\vec{D}=E+4+\vec{E} & (C Q S)
\end{array}
$$

D.EECTR1C DECREASESE VE CHAREE ON

QLATES IS THE SAME
(4) DUE LECTRUC CONSTANT:K

$$
\begin{array}{r}
D=k \varepsilon_{0} E=E+\overrightarrow{\vec{b}} \\
\Rightarrow k=1+\frac{b}{E_{B}}
\end{array}
$$

 E : E EVLD Q NT, OUS TO PLATESS

DuTsum suradaE

BCLAREATRON CHANCE

$4-5-12$ intuss
ROLARIZATIOM IS A DIELECTRIC

E. DuE To wrmiduth Ditecues

$$
E_{0 c}=E_{4} E_{3}+E_{4}
$$

$$
-q p \cdot d \vec{s}=
$$

$$
=o_{p} d s=-(0 \cos \theta) d s
$$

$$
\Rightarrow C_{0}=-100 N=
$$

1REAFR devamR AK Q

$$
d q=-\sigma\left(2 \pi R^{2} \alpha(n \theta d e)\right.
$$

$$
\begin{aligned}
& d E=\frac{-1}{4 \pi} \quad \frac{d x}{4} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\sum^{2}}{-2} \int_{0}^{\pi} \cot ^{2} e^{2} \cos \theta d e \\
& =\frac{p}{1} \cos ^{3} l^{2 \pi} \\
& =\frac{P}{3 E} \\
& \therefore E_{0}=E+\frac{e_{0}}{1 \epsilon_{0}}+E_{4}
\end{aligned}
$$

ATON HY H WELQ (E,

$$
\text { Eutc }+4+(k-1)^{\frac{E}{2}}
$$

$$
=\quad k+2 k
$$

A ATOMS Ren vur vocuny

$$
x=10^{-18} m
$$

$14 \leq$
$12<2$
$0<2$
$1+9$
-36
0.42

$A P A B E$ EHELA

$$
\frac{p \cdot P G G E}{M O R E}=
$$

$$
E_{14}=6 x
$$

$$
x=4 \in a y
$$

$$
\begin{aligned}
& =N e^{3} \operatorname{sic} l^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \frac{N}{3+}\left[\left.r_{1}+\pi+\frac{k}{4} \right\rvert\,\right. \\
& \alpha=\sqrt{a_{A}}
\end{aligned}
$$

$4-7-22$ (atc)
ORIENGATIONAL POLARESTIONOALIGNMENTOF PGRMANENT DEUES WHA ELECTRIO EIELO RQESENT, EIELD TEMTS TO WAE TOTUC UP DMQWE,WHLE NTERACTIONS TWHYT THE RIGOLES THEMSELUEG TEND TO RANDOMLZE DNRECYMON

$u=-\vec{p} \cdot \vec{\varepsilon}=-p \vec{\varepsilon} \cos \varepsilon$
$U=\uparrow \int U d N$

$$
=\frac{-\int P E \cos e e^{p E \operatorname{cosel/KT}} d \Omega}{\int e^{p E \cos / K T}}
$$

$$
=e^{- \text {प/kT }}=e^{\text {BESate/KT }}
$$

$$
d \Omega \text { is THE } \operatorname{san} D A N G L=
$$

"Twire e and $\theta+d e$

$$
\text { RI2) } n=\frac{\text { ABEA SDET: ON SPHERE }}{R^{2}}
$$

Now $d x=\sin e d e ; \quad x=\operatorname{cote} ; a=p E / k T$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\cot \theta}=-\frac{f_{1}^{\prime} x e^{a} d d x}{-e^{a} d x}=\frac{e^{a}+e^{-a}}{e^{a} \cdot e^{-a}-\frac{1}{a}} \\
& \overline{\cot \theta}=\cot A \cdot \frac{1}{a} \text { I LANGEVNN EUNCI. }
\end{aligned}
$$

FOR NORMAB T ANU $\quad 0 \quad a<1$

$$
\triangle Q=9 / 3 \quad \text { CEXP/N SERES }
$$

$$
=N p \frac{E E}{E}=N P^{2 E} / 47
$$

$$
k=1+E_{n}^{p}
$$

$$
=1+\mathrm{NP}_{\mathrm{P}} \mathrm{a} \varepsilon_{0} k T
$$

W OTAER MOMARIZATION GESIDESGLQEE ORIENTATION
 (evrle tan)

$$
4-10-72(M O N D A Y)
$$

$$
E=E_{b} e^{\text {hut}}
$$

$$
\begin{aligned}
& E=m \frac{d^{2} x}{d^{2}}=q E_{0} e^{\alpha \cdot 2}-\beta x-n x \frac{d x}{d} \\
& \beta=\text { hestorns coq EELCENT } \\
& m=M A S S \\
& \gamma=F U Q G E E A E T G R
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow d^{2} x+\frac{a^{2}}{n} x+d^{d t}=\frac{a}{n} E_{0} e^{\text {kot }} \\
& d^{t}+d \frac{d x}{d t}+\operatorname{cog}^{2} x=\frac{9}{\pi} E_{e} e^{4 u h} \\
& \text { 1/GMAGIC } \\
& x=\frac{a}{m}\left[\frac{E_{8} e^{2}+}{u^{2}-u^{2}+d+u^{2}}\right]=\frac{q E_{0}}{m} e+\omega^{2}\left[\frac{u_{0}^{2}-\omega^{2}-2 d a}{\left(u_{0}^{2}-u^{2}+d^{2} u^{2}\right.}\right]
\end{aligned}
$$

$$
\begin{aligned}
& p=q x \Rightarrow p=N q x=\frac{N E^{2} e^{2}}{n}
\end{aligned}
$$

$$
\begin{aligned}
& P_{N}=-N Q^{2} E \cdot e^{\operatorname{Lot}\left(\frac{1}{2}\right): d^{2} L^{2} N E G L G Q L} \\
& P_{2 u}=0
\end{aligned}
$$

NEAR LLE LOL

$$
f_{n}=0: P_{\infty}=\frac{N q-E s}{m f} e^{\text {eut }}
$$

RESURTS;

$$
\frac{\prod_{0}-R E s \in A N C E}{4}
$$

(a) 22 UO

$$
P_{1}=\frac{\Delta a_{2} E_{0}}{n} e^{* \omega^{2}}\left[\frac{-u^{2}}{\psi u-t^{2} \omega^{2}}\right]
$$

HEADS TOWARD =ERO AETER HUMP AETER UR $D_{\text {out }} \rightarrow 4 E A D 5$ GowARD EEAE

$$
\text { Power }=\frac{d w}{d t}=E L
$$

POWER WPUT MAXMMUN O RESONANEE; $u=\omega 0$
Eo@MAXWHENX=0 sWCE VELQQITY

$$
V \operatorname{cs} M A x a x=c
$$

$$
K=1+\frac{p_{0}}{E_{0}} ; \quad K=1+\frac{P_{1 N}}{E}: K^{\prime}=1+\frac{P_{0}}{E_{0}}
$$

$$
k / p,-6 i 6+4+10 n
$$

4-11-72 (TuESDAY)
EERRO-ELECTRICITY:

MUERSION CENTER OE SWMMETEY -ALL RONTS WNERTEOTHRU INVEREION CENTEOR

EERRO-EVEOTRLCITR
HUNT CELLS HAUE NO INVERSION CENTER DE SYMMETRY
2) 4 LTERMGTE POSITIONS EOR SOME ATOMS IN UNIT CELLS
3) DIPOLE W ONE CELL HAS STRONG ENQUGW FIEGD TO PRQRUCE SMMLAR RIPOLE IN NEXT, ETC.
(CO.O PERATLE QAEMOMENON)
Ex) $\mathrm{Ba}_{\mathrm{a}} \mathrm{Ti}_{3}$

$$
\mathrm{Ba}^{+2}
$$

- $T i^{+4}$
00^{2}

$$
\begin{aligned}
& \text { Ti+4 oEECENTER BY.06 } \\
& 0^{-2} \text {-OQ } \\
& T E R R A O O N A L \quad 2 B-593^{\circ} K
\end{aligned}
$$

WMI CHANOE EROM CUBIC IN ABOWE TFMPERATURE CHANGE)
\rightarrow POLARIZATION WUTH ALL DIPOLE MOMENTS IN A GNEN REGION OE CRYSTAL (DOMAN) IN THE SAME DIRECTION)
mor Bation (SHGEEGRYSTAL)

NO ADPLIEDE EIELD

ARPLYING E GIELS

EERRO ELECTRIC

TEST 2
I) SPECLEIL HT, OE NNSULATORS
(NO SPEFLEIC QUESTIONS ON STAT:STUCS)

1) EINSTELN MOLEL

MODEL, DERUATLOA OE C $\angle, O M A Q S Q N$ W/EXEEAMEMT
2) DEEYE MODEL
3) PHONON-PACRET OF VIGRATIONAL ENERGY
T) D, ELECTRMS

リ $O E=N T T O N S$ oE P, P, \vec{D}, k, α
2) TYPES OE POLAR 2 QTTOA
3) LOCAL FIEBO (ATOMLC DOSITIOA

CDUE TO ombse QMPOLEAMD CHAREES)
$4 C_{L A U S U S E M E S O T T H E Q U A T I C N}$ $C D E R+\cup A+I C N \angle S E M E D N D N C X$
5)TONC POLARLUAT1ON
b) ORLENTATIONAL POLAP.EATION

COERHUATMN DERENDENGE OEPONEET)
2) $O L E L E T R I C$ IN $A L T E R N A T M G \quad F L E L D$
8) EERES-ELECTRICS

$M A C M E T M C H O C E S S E$
IEAPELY MACNETLC FIELE SE MNTENSMY G $\operatorname{TOA} A A T E A A L \rightarrow M O U C=O \quad M A C N E T U A T I C N \quad$ A

$$
\begin{aligned}
& \vec{M}=\sum P_{P} / V
\end{aligned}
$$

MAGNETIC MGMENTE
$\triangle O A Q Y A \perp A R E N E T U C M O M E N T \quad(C H E L E)$

$$
\begin{aligned}
& \bar{P}_{\operatorname{man}}=I A \hat{A} \\
& \vec{P}_{m}=\frac{\subset V}{\operatorname{Dr}}\left(T R^{2}\right) \hat{A} \\
& =2<R \quad A \\
& =\left(-\frac{a}{2 a}\right)(-m v a n)
\end{aligned}
$$

z) SPMN MAGNETIC MOMENT:
APRGM MAEAETLE $\because E L L$

$$
\begin{aligned}
& \begin{array}{l}
\vec{D} x+\frac{B}{B} \\
U=-\dot{B}+\vec{B}
\end{array}
\end{aligned}
$$

-

DAMMAGNETISM DUE TO LARMOR PREOESSISN OF ELECTEON ORGT

$\omega_{0}=\left(\frac{-2}{2 M}\right) \vec{B}=14$ MOR PRECISION EREQ.
ITNDUCED ANGULAR MOMETLM \rightarrow DIAMAGNETIC EFFECT (ALLINELECTMONS OQBIT)

$$
\rightarrow b_{w_{0}}=m w_{2} p^{2} ?
$$

$$
\begin{aligned}
& w_{A}(\vec{b})=\frac{2 n}{n} L_{n} L=\frac{-x}{2 m} n \omega_{n} p^{2} \\
& \text { SedReR cALRAMUS = r } \\
& r^{2}=x^{2}+x^{2}+2^{2}=3 x^{2} \\
& p^{2}+x^{2}+x^{2}-2 x^{2} \\
& p^{2} \mid=p^{2} \\
& \left.\rightarrow p+p_{0}-\frac{p}{2 m}\right) m<\sin \left(\frac{1}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M=M p \text { man } \quad B=\frac{L}{4} \\
& Z=M A=N P \\
& A_{a}=\operatorname{Leq}_{2} \pm\left(\frac{b_{2}}{L^{2}}\right){ }^{4}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{2}{2}\right) E \times B \\
& d \vec{L}=\left(\frac{-2}{2}\right) \overrightarrow{5} \times \vec{L}
\end{aligned}
$$

$$
\begin{aligned}
& a 4 x^{2} / 25
\end{aligned}
$$

$$
\begin{aligned}
& \text { NLE } 4, \text { bin } \phi d=\left|\frac{1}{4} x\right| d m
\end{aligned}
$$

$4-17-22 \quad 424$
TOTAL OE \qquad

TOTAL MAGAE TE NGNEAT

APER Y MAENETC FLELD TS ATOM AA

$$
d_{2} \geq \text { CNMONENTaF } L=L_{y}=A_{2} T
$$

$$
3 m_{0}=+1,1-1
$$

$\Rightarrow E T$

$$
m-\frac{3}{2}+\frac{1}{2},-\frac{3}{2} \Rightarrow+\frac{3}{2} t \leq 5
$$

$\triangle \mathrm{NO}$

$$
\begin{aligned}
& \left(A_{n}\right)=-9 y\left(\frac{c^{2}}{m_{0}}\right) d= \\
& =-9+(2 m) m \\
& \begin{aligned}
\Rightarrow U^{\prime} & \left.\left.=-G_{m}\right) \frac{B}{2 m}\right)\left(-\frac{3}{2}\right)+B
\end{aligned} \\
& =\frac{-3}{3} q\left(\frac{4 \pi}{3}\right) B \\
& =-\frac{3}{3} 9 Q 日=B=B O H Q \text { MACNETON } \\
& U_{2}=-\frac{1}{2} Q B B
\end{aligned}
$$

PARAMAGNETISM

$$
\bar{U}=-\left(f_{n}\right)_{z} B
$$

YHONG AEIER NFNAF CRANL)

FOQ N ATOMS PER UNTT WOUME

$$
\begin{aligned}
& M=N\left(\bar{P}_{n}\right)= \\
& \chi_{p}=M / H
\end{aligned}
$$

NORMAL TAND B (NOT VERY LON TOR WERY HIGO B)

$$
M=C T ; \quad c=N q^{3} B J(J+1) B / 2 k
$$

$$
\text { Go ro -was pt } 48
$$

$$
\begin{aligned}
& 2 x=
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}=u e^{-\quad / k T} / \Sigma e^{\cdots / k t} \\
& \pm m_{g} q_{0} \beta \beta e^{\cdot m, q+\beta B / \mu p} \\
& = \pm e^{-m, a, G B / k T}
\end{aligned}
$$

$(4-18-2 \quad+\cos$
 arevtuclocfy V_{0}

on $E=a J \quad(A A+C A C O L S$ te $v=2 \Delta)$

$$
\Rightarrow c=\sqrt{2} E
$$

$0 \operatorname{bacolan} A+1=$

$$
\sum_{a} E_{a}=(\operatorname{cov}) Y_{0}=n \frac{d V_{0}}{t} .
$$

Supeose E LAS MEENOX TH YaCOD
TURN OEE.

$$
\begin{array}{r}
=n_{0} \frac{d v_{0}+n}{v_{0}}+v_{0}=0 \\
\therefore v_{0}=-+v_{0} \\
v_{0}=v_{0}(0) e^{--1 /}
\end{array}
$$

$1 / d$

Tis TiAE mor vo tavni te le

 $A T E M C O E S E Q C A C D$

$$
\begin{aligned}
& =n .2<
\end{aligned}
$$

ELELD OM

$$
\begin{aligned}
& 2 e^{-2} L_{s}=n L_{0}^{d}=0 \\
& \rightarrow 2 E=\frac{M}{1} V_{0}
\end{aligned}
$$

FOL THERMABCOADLCTHLTV

$$
\begin{aligned}
& =2.45 \times 1 C^{-8+4 T T-2 A M Z a}=
\end{aligned}
$$

$$
C_{0}=-a \quad(\therefore \quad-4 \alpha+\square)
$$

$e^{-}<E$
Not 5e

$\rightarrow-7 \quad A D C L \angle A G E R$
 NEMEASEL $Q Y \quad A L V E N L E N T \quad Q E$ FREE ELECTPGM MAGNETK MOMENTS
 $A \angle 1 E M M E L T S$
$4-24-72(404)$
EREE ELECTRON THEORY
METALEUBE EDGEL.
 CUTGIOE THE ALBSLEL ELECTROA ENLEACIES
CERSM SEHROENINCER ESCATION ARE:

$$
\begin{aligned}
& E_{n}=\frac{n^{2} 5^{2}}{n^{2}}\left(a_{x}^{2}+n^{2}+n=\right) \\
& n_{x}+n_{2} n_{2}=1 N T E G E R S \geq 1
\end{aligned}
$$

ACAIN

$$
E_{N}=\frac{h^{2} t^{2}}{2-2}\left(n x^{2}+n y^{2}+n=\right)
$$

 ARE H THE SAMESTATE

PLAEE DTEQLTRMANSTATISTLES
PRORAGMLTH THAT THE STATE OE ENEAGYE

$$
\text { CEERM FLNETIQN: } f(E)=\left(E_{2}\left(E_{2}-E_{d} / k++1\right)^{\prime \prime}\right.
$$

@T=0, $\mid f(E)$

FINDING Ey

COBIC TYAE LATTIEE EACH ROINT REPRESENTS TWO STATES n

ALL pomTS (STATESD INSLDE $Q_{\text {AAX }}$ ARE DCCuDED Q T=O\&

$$
\begin{aligned}
& R_{n A x}=\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)^{1 / 2} \\
& R_{A A X}=\frac{\sqrt{2 m E E_{0}}}{\hbar \pi} \text { SR } R_{M A K}^{2}=\frac{2 m t^{2} E_{E}}{\pi^{2} \pi^{2}}
\end{aligned}
$$

 CSAE AS TWMCE SPHERE SECTRON HOLUME

$$
\begin{aligned}
& \left.=2\left(\frac{4}{8} \frac{4}{4} R^{3}\right)^{2}\right) \\
& =\frac{4}{3}\left(2 m L^{2} E_{F_{0}} / \pi \pi^{2}\right)^{3 / 2}
\end{aligned}
$$

$\operatorname{EOR} N$ ERES EreTRONS, $N=\frac{\pi}{3}\left(\frac{2 m L t}{\hbar T}\right)^{2}$

$$
\begin{aligned}
& \Rightarrow E_{F}=\frac{\pi^{2}}{2 m}\left(3 L^{3}\right)^{3} \\
& =\frac{h^{2}}{2 m}\left(3 \pi^{2} n\right)^{3 / 2} \text { 2n E EREE ELECTCON } 0=u S T T \\
& \therefore 1 \text { to lo eilous }
\end{aligned}
$$

DEFINE $g(E) d E=$ NWMBER OF STATES WUMT
ENERE TWXT E ANE E+dE
LAND N(E) dE FNUMEER QE ELECTRONS LAUNG ENERGYTMNT EAND $E+d E$
wab

$$
\begin{aligned}
& \Rightarrow f(E) \delta(E) d E=N(E) d E \text { (FOR ANYT) } \\
& \text { (a)TBo@k } \\
& f(E)=1 \text { UN Ta } E=E \\
& =0, \operatorname{ABONE} E=E+ \\
& N=\int_{0} N(E) d E=S_{0} E_{0}(E) d E \\
& \text { Nou } N=6 / 3 \pi 2\left(\frac{8 m^{2} E R a}{k / 2}\right.
\end{aligned}
$$

Hence

$$
\begin{aligned}
& L^{3} 3\left(\frac{2 m E_{0}}{\pi^{2}}\right)^{3 / 2}=\int_{0}^{E_{0}} E(E) d E \\
& (\text { () } \\
& \text { (a) } \delta(E)=\frac{L^{3}}{2 T^{2}}\left(\frac{2 m^{2}}{R^{2}}\right) \sqrt{E}=C \sqrt{E}
\end{aligned}
$$

(5)

ELECTRGN EMEREY DISWRIQUTIOM

(a) $+0^{+}$

$\sec R E A B+L C H \quad T E M D A$

$1 S A C E C D E C D \square^{\circ}$
$4-25-72$ (nus) TEST GQD
ERGE ELGQ4ABN MCBED

$$
e=\left(n^{2} m^{2}(\operatorname{san}+2)\left(n^{2}+n^{2}+n=3\right)\right.
$$

NO MORE THAN 1 ELEETAQN eER STATE NM,A, MEMAT
suoERPOSNAS $f(E)$ on é (E)

$$
\begin{aligned}
& T=0^{\circ} k \neq \quad f(E)=1 \quad 0<E E_{\text {; }} \\
& =0 \quad \mathrm{Eys} \\
& E_{t}+n^{n}(2 \pi n)^{3 / 3}
\end{aligned}
$$

SMALC COR GLECTRQNS DUL TO ExCuLEMON PRWCRLE AVERAGG ELEGTRON ENENGY

$$
\text { UT=0.k }\left.\right|_{\int E N(E) d E} ^{N E}
$$

E. $\frac{\int E N(E) d E}{N}=N=\int_{0}^{E} N(E) d E$

AND $\int_{0}^{\infty} E N C E \backslash d E=f_{0} C E^{3 / 2} E$ $=\frac{2}{5}-5 / 2$

$$
\Rightarrow E(0)=\frac{s}{5} E_{0}
$$

$$
\begin{aligned}
& \Rightarrow E=E \operatorname{Ec}\left[1+\frac{5 \pi^{2}}{12}\left(\frac{E T}{E}\right)^{2}\right]
\end{aligned}
$$

ENCREASE A HTTLE WMM T, ANDE E DECREASES SLIGMTUY

SNEEIFIC HEAT
TOTAL ENERCY H ELECTRONS:

$$
\Rightarrow C_{V}=d V_{V}=N E(0) \frac{5 \pi^{2} K^{2} T}{6 E_{0}^{2}}
$$

Now $E(0)=\frac{3}{2} E$

$$
\rightarrow\left(C_{V}\right)=\frac{N T}{2 E} E_{0}^{2} T
$$

$$
\begin{aligned}
& =\left(<u s=\frac{(\operatorname{Not}) L T}{2 \leq t}\right. \\
& =R L T F_{2} / 2 L_{5 b} \angle R \\
& \left.\frac{B Y}{S T}\right]_{p}=C_{v}=\left(C_{x}\right)_{x+G}+\left(C_{\gamma}\right)_{B+E} \\
& \text { AS T- } C^{Q K} ; C_{y}=A T^{3}+B T ; T^{B} C K T \\
& \frac{6}{7}
\end{aligned}
$$

$$
B=\frac{B L T^{2}}{2 C R O M A Y \text { FMA E }}
$$

$$
B=\frac{1-24 c h}{\operatorname{HoL}} \quad(T+\cos Q)
$$

scatreanc bont gre neaf EGRMP SuRAqEa

$$
\begin{gathered}
\text { E wh SHVET EERMT SURYACE } \\
\text { wntw }
\end{gathered}
$$

$4-18-72$ (4UE 5

 DUE $-T / Q N Q E \&=$

 EMPERMAENT
 CAURY MEA G DEDS PWR. INPUT

$P A O T C A S$ OE YAEMCV $E=b \perp$

 BE RESQNANT ABSONETION
 CET A S U U OEN MNCREASS $N N \quad P N A, \quad N N Q U T$ CAM MQUL GQMPUTE Q, FOMATHESGCLM THIS EXPEMMMENT IS ALSO USEDTO OETERMME MNTERNAL FIELDS, AND AS $C A L L E D E G E C T Q Q N \quad P A R A M A G N E T L Q \quad P E S Q N A N C E$

EERROMAGNETISM
SRRNMAMEOUS MACNEFISM WMTH NO ARELEO EIELD M VERY LARGE COMPARED WITL PARAMAGNETIC

SUSCERTMRLIP OE EERROMAGNETHC

RECAL FOR PARAMACNETO: $X=C T$

WEISS
COORERATHE EFEECT-MACAETE MOMENTS TEND TO LINE UP NEIGTQOEMO PM UNSAME
DIRECTIOM.
AT THE DOSIIION OF THE ATQM
$H_{\text {Le }}=4+\lambda M$ - DuE To ALIGNMENT
ABOUE THE CRUTKAL TE IT'S A PARAMAGNETIC MATERIA

$$
\Rightarrow x=M / H_{H}=C T
$$

CNEIGEBQAMG MOMENTS BEGIN TO TAVE LESS EFFEG ON EACM OTHER PASFTE

$$
\frac{M+X}{4}=\frac{9}{8}
$$

$$
M=\frac{c}{T}(1+\lambda M)
$$

$$
z=\frac{G}{E t}=\quad, \quad=-c \lambda
$$

$M=c H /-c \lambda$

$$
x=E T-T_{0}
$$

WHAT CAUSES TUESE MAGNETVC MOMENTS TO
ALGAEACH OTMMA?
"EXCHANCE EORCE CAUSES NELQLBODINC
SEIN MAGNETIS MOMEATS OE QLTER
ELECTHENSINEEQTANNATONS TG QE
IN THESALE DLAECTMCN
LOOKQTHE HYNDOEQNMCLECLVE

$$
2 \quad P C S S|Q| L T \mid E \leq
$$

(1)THE $E L E C T R C N S \quad H A V E T M E$

SAME SPMN, $=X C L U S I S N$ PRNNCIPLE
TENDS TO FORCE APAET
E THE TWO ELECTRONS HAVE OPROSITE

$$
\operatorname{sp}, N
$$

DASALLEL SDRAS CCONSTANT PROCAGLLTH LWES
\square OF ELECTRON LOCATIOA LOW PROCAGMLTY OF GMRHC A "SbARLQ' $5 E E G T R Q N$
$A N T T \cdot A Q A L E L S P I N S$ *

IN FERROMAGNETIC MATERLALSTHE PARALLLL SEIN CONFEGURAFIOA HAS LONLEST ENEMCY. PARALLEL SNDNS IN ADUACENT $A T O M S \quad(E e N E C O)$ COMAINS IN WHICN M ISIN ONE QIRECTLOA
 60.0 meterget

$$
4-27-72 \text { (wED) }
$$

PAEAMAGAETISM 二F FREE ELECTEDA

$$
\left|p_{n}\right|=q\left(\frac{L}{2 n}\right) \leq
$$

+et

$$
\begin{aligned}
& \left(p_{n}\right)=8\left(\frac{b}{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}(E)=5=0
\end{aligned}
$$

$$
(4)=-\infty)
$$

NCE CRQRLELL NLE ANTIPARALLEL
 wita $A E E L D \quad\left(Q T=O^{\infty}<\right)$
These ebecmend
\& CR

$$
\begin{aligned}
& A N T P A R A L G L T O P A R A L C E L=\frac{1}{2} N\left(E E_{0}\right) \Delta E \\
& \Delta E=E L
\end{aligned}
$$

$$
\begin{aligned}
& A \quad N(E)=C E^{1 / 2} d E \\
& =\frac{1}{2}\left(\frac{2 m}{5}\right)^{3 / 2} E_{E_{B}}^{1 / 2} d E
\end{aligned}
$$

$$
\begin{aligned}
& M=M A Q E T C \text { MOMENT OEGUNOVOLUME UMD } \\
& M=\left[\frac{1}{x T 2}\left(\frac{2 M}{T^{2}}\right)^{3 / 2} \operatorname{Lg}_{\mathrm{g}}^{1 / 2}(p+)=\beta\right](\rho+)_{2}
\end{aligned}
$$

ASSUMMNG $N / \angle M T$ COSLAE

TEST REVEM

A) ATOME U UAMGENETISM

2)PARAMACNETIE RESONANCE
C) EERRQMASNUTVUM

a) $E \times C H A N E \quad E O R C E$
4) $\operatorname{CDDTA} A E Q L \leq \quad M$
$5100 M A 1 N \leq$
C) PYSTER1SIS
D) FREE ELECTRON THEONY

1) MODEL

2) IN QLANTLM MECHANICS

$-Q E E N E L E L E C T M Q N \leq T A T E-E C L U S D O M$ PRMCIOLE, FERMT ENERGY EERMT SUREACE IA $K C M O M E N T U M \leq B A C E)$

3) OETEAMMATLON QE THE DEUSTE aE STATES

$$
g(E)=C E^{1 / 2}
$$

4) AVERAGE ELECTRCN ENERGY (O T-OQE DEDENDENCE QN T, ANOELECTRQALC

$$
\text { spEct=10 }+1
$$

5) GREE ELECTRON PARAMACNETUSM

0250

$$
\text { Fret }(4-2) \cdots 72)
$$

EBEE ELECTRONS M \& ME TAL

$e^{-2}-5$
(
L

ELOTRONS CONFMEO TO BOX

$\frac{x^{2} y^{2}}{x^{2}+y^{2}} x^{2} z^{2}+\frac{x^{m}}{4} \quad$ w $\quad=0$
$U=0 \quad a \quad E D C E S A D \quad \Delta+E E$

THE STATA OF MOTION OF THE ELECTRONE DETERMNED BY NE NY ANDNX

$$
\begin{aligned}
& E=p^{2}=\frac{p^{2}+N^{2} p^{2}}{2 M} \\
& =x^{2 y^{2}}\left(n^{2}+n^{2}+n^{2}\right) \\
& P_{x}=5 \pi C_{4} ; P_{x}=\frac{\square}{L} ; P_{z}=\pi \pi A_{0} \\
& \sum_{p_{x}=\hbar k_{x}}^{p_{2}=\hbar k_{x}}
\end{aligned}
$$

CoMEQHEAT of THE SRN ANGUNAN MOAEATUA A ERESENTS ORMAEMETGOEED

EXCLUSION RRMCMELE
NO TWO ELECTRONS WNTHE SAME SHETEM
 QUANTUM NLMBERS HAVE TUE SAME GLANTUM nUMBers $\left(n_{x}, n_{y} n_{2} m_{3}\right.$
 QT=OC, Ah STdTES UN TO E ARE occupted BYANELECTRON EACH,NO STATES ABOUE Ef ARY OCCUPUED

$$
(C \cdot)_{0+4}=\frac{d V}{d}
$$

EXCLUSION PQWCIPLE CAUSES Q TO EE LOWER THAN USUAL
agna Iteotey

Pe P(AAOMOS)

PEREEGTHY EREE GLECTRON

$$
\nabla^{2} \psi+T^{2}+E \psi+0 \quad\left(v=0 \quad\left(E=\frac{p}{2}\right)\right.
$$

$\nabla \psi=\frac{z+\frac{p}{n}}{\pi}$

$$
\nabla^{2} y v=-1 s^{2} x
$$

$$
\begin{aligned}
& k=\frac{a}{\pi}>\text { noe Motran re } \\
& \text { THE 化 } 6 \text { - } 4 \\
& k<O \text { EOR MOTLCN } \\
& \text { Ta THE LEET }
\end{aligned}
$$$\underbrace{4}_{(1+a-4}$

$$
\begin{aligned}
& u(x+a)=u(x) \\
& \nabla^{2} y+T^{2}(E-u) \psi=0
\end{aligned}
$$

Fak दut x brosetion

Re(y)

KEONLG-PENAK MODFL

$$
\left.U(0)=u_{2}(0) ;\left(\frac{4 x}{6}\right)_{x=0}=\frac{6 x}{d}\right)_{x=0}
$$

$$
u_{1}(a)=\left.U_{a}(-b) \cdot\left(\frac{S^{x}}{5}\right)\right|_{x=a}=\left(\frac{\left.d u^{x}\right)}{x}\right)_{x=b}
$$

$$
=\frac{m_{0}}{h^{2} \alpha B}
$$

$\angle E T U_{0} \rightarrow \infty ; b-2$

$$
\begin{aligned}
& -b<x<0 \quad \frac{2+4}{5}+\left(\frac{1 n}{15}\right) \varepsilon y<=0 \\
& \alpha^{2}=2 m E / \hbar^{2} ; \theta^{2}=2 m\left(\omega_{0} \cdot t D / \hbar x\right. \\
& z=L_{L}(x) e^{2 k x} \\
& u_{1}=A e^{i(\beta-k) x}+B e^{1(\alpha+\alpha) x} \\
& u_{2}=c e^{(\beta+k)}+D e^{-(\beta+\alpha k) x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6^{2} y}{x=}+\frac{y^{2}}{x^{2}}[E-U(x)] y=0 \\
& Z y=U_{N}(x) e^{k k x} \text { (anock EUNCTIONS) } \\
& u_{k}(x+a)=u_{k}(x) \\
& \text { - modulatian runcpion }
\end{aligned}
$$

$5-2-72$ (TUES)
H $~$ PERLORLC POTENITA C
KRONIG-PENNY MODEL

$$
\frac{\int_{0}^{+b}+\sqrt{40}}{-b a}
$$

SGFREEDNGER EQUATIONGGUES
 $\frac{n y b l}{A+c k a b}$

$$
\begin{aligned}
& \alpha=\sqrt{2 m E}<\sqrt{5} \\
& \beta=\sqrt{2 m \omega_{0}-\frac{c}{h}}
\end{aligned}
$$

$L E T \quad b \rightarrow 0, A N O \quad \angle, a, \angle 0 b=C O N S T A N T$

$$
+102+M / 7
$$

$$
x 4
$$

 $\Rightarrow C E V T A L N$ YALULS OE O SNLY AS O $N B P E A S E S G A D \quad \angle E N C T H S$ UNREASES (EORRIDDEN GARS DECREASEL

$$
\begin{aligned}
& D P=m v_{0} b_{0} / \pi=
\end{aligned}
$$

praberactaon

RARABOLIC
15
IN A PERIODIC POTENTIAL

θ wavema
$2 L=T 2=27 A \Rightarrow A=2 Q$
FIRST ORDER BRAGG'S LAWL

$$
n \lambda=2 \pi \quad L Q \quad \text { iomeraction) }
$$

$p \neq t h 6$ ANYMORE
$\hbar K=E M X S T A L$ MOMENTUM (ENERGY OE FREE Q-) $h k$ SONSERVEO

MUMEER OE STATES PER GEND
bevir in A coiche

$$
\begin{aligned}
& \operatorname{se} \psi(x)=\psi(x+L)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\eta(x)=\psi_{k}(x) e^{t \pi x} \\
z(x)=(x+N a) e^{x \operatorname{tec}(x+N a)}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left|Q^{2 g+4} g+\cdots 000\right| \\
& x=0 \quad \text { N } x=L=N a
\end{aligned}
$$

$$
\begin{aligned}
& \pi<k<\frac{\pi}{a} \rightarrow F \text { RLST BELLLOUN EONE } \\
& \left\lvert\, \square<k<\frac{27}{a}=\operatorname{cocon} 0\right.
\end{aligned}
$$

N STATES PER BAND (2 COMSLLER NG E SPNN)

$$
7 / a
$$

$$
16
$$

DENS ITY CE $\leq T A T E S$

$$
\frac{N / 2}{T / Q} \div 12 \pi a
$$

STATES PEU UNUT K

$$
\frac{4}{4 /}=4 t x=\frac{19}{4}
$$

$$
5-5-72(F R I)
$$

NEARLY FUL CONDUETION GAND

$$
0 \Rightarrow N O T \text { SCEUOLED (HOLE) }
$$

ARRY E EIELD,ACC E S TOLEEF
I) QUANTUM MECHANICS REVIEW (OOUBLE:HARED
A) DUAL PROPERTIES OF UGHT:

MATTER (PHOTON)
WAVE (ELECTROMAGNETIC)
E= ht GENERGY IS RRORORTIONAL TO FREQUENCY)
Pah/A (MOMENUM NUERSLY PROMORTIONAL TO WAVELENGTH)

IS IN DIRECTION OE
THE WUV品FEOMOTION: $\mathrm{H}=\mathrm{h} / \mathrm{h}$
6) WAVE PROPERTIES OF GECTRONS:

FROM THIS EXPERIMENT ONE MAY DETERMINE:

$$
\begin{aligned}
& P=h / \lambda \\
& A N D \\
& E=P^{2} / 2 m+V \text { SV:POTENTIALE }
\end{aligned}
$$

DUAL NATURE OF LAVES AND PARTICLES:
LוСभ: $E=h f \quad p=\hbar E=h / \lambda$
MATTER: $E=p / 2 m \quad \rho=\hbar k=h / \lambda$
C)HEISENBURG'S UNCERTAINTY PRINCIPLE: ONE CANNOT SIMULTANEOUSLY DETERMINE A POSITION COORDINATE AND THE CORRESPONDING MOMENTUM CO-ORDINATE TO ANY GREATER PERCISION THAN:

$$
\left(\Delta P_{x}\right)(\Delta x) \geq h
$$

THEPROBAGILITY OF FINING 4 PARTICLE IN THE VOGUME IT AT POSITION X, Y Z.

$$
P=\int_{T}|\psi|^{2} d Y \text { g } \psi \text { Is THE WAVE }
$$ FUNCTION, VALUED AT ALL POINTS N SPAE. MAY BE REAL OR COMPLEX

 C dY
D) 5 CH

ROEDI

$$
-\frac{h^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi
$$

(TIME INDEPENDENT)
(EXAMPLE LITHE VIBRATING ATOM

$$
\begin{aligned}
& V=k x^{2} \\
& \Rightarrow \hbar^{2} \frac{b}{}^{2} y \\
& \frac{2}{x^{2}}+k x^{2} \psi=E \psi
\end{aligned}
$$

SOLUTION YIELOS: En= $\frac{2 n-1}{2} h f:$
 AT REST!
(EXMMPE 2) NE EGEGTRON ATOM: $V=\frac{1}{4 T E} \frac{q}{R}$
YBGONE
MBGOINE

$$
\left.E_{n}=-C_{n} 2 \Rightarrow n=1,2,3,4,5 \cdot \text { (PRINGIPLE QUANTUM }{ }^{2} \text {. }\right)
$$

E) QUANTUM NUMBERS
) 1 TH $\vec{L}=\vec{\nabla} \times \vec{p}$ (ANGULARATONENTUM)

$$
\begin{aligned}
& |H|=[l(l+1)]^{1 / 2} T \operatorname{L}=1 \\
& \text { IPLE QUANTUM NUMBERS }
\end{aligned}
$$

N: PRINEIOLE QUANTUM NUMBERS
$\angle: A$ IMUTHAL QUANTUM NUMBERS

$$
\begin{aligned}
& \ell=0 \Rightarrow 5 \text { ESECTRON } \\
& \ell=1 \Rightarrow P \\
& =2 \Rightarrow d \\
& =3 \Rightarrow f
\end{aligned}
$$

2)ELECTRON SPIN ANGUGAR MOMENTUM E

$$
|5|=\sqrt{3 / 4}
$$

SIIN MAGNETIG FIELDORBY CERTAIN DIRECTIONS ARE AHOWED FOR K ANO S

$$
L_{2}=m \text { 定 } \geqslant m=2,1,0,-1,-2
$$

(SWEEPS A CoNE)

$$
b_{5}=n s t=m_{3}=v_{2}
$$

4) PAULI-EXLLUSION PRINGIPLE (APPLESTO 000 HALE INTEGRAL SPIN PARTIEGESI:NO T WO ELEETRONS IN THE SAME QUANTUM
MECHANICAL SYETEM MAYHAVE IDENTICAL
SETS OF QUANTUM NUMBERS (N, M, MS)
inei; ; \quad i (1 0 0-1/2) is
H2 $2^{\prime}, \quad H e(100-1 / 2) 15^{2}$
$n=3$

$$
\begin{aligned}
& H \cdot(100-1 / 2) 15^{2} \\
& \text { H: (200 +1/2) } 15^{2} 25 \\
& \text { Be (200 M/f2) } 15^{2} 25^{2} \\
& \text { del } \\
& \text { ETG. }
\end{aligned}
$$

n:ENERGY
L:OREITAL ANGULAR MOMENTUM
$m=Z$ DIRECTION OF I
$m_{S}=$ COM OONENT OE 5
$s=1 / 2$
II) SOLIDS AND FORCES 'TWIXT ATOMS IN 'EM

1) GLASSIFICATIONS OF SOLIOS

IAMORPHONE SOLIS: RANDOM ATOMIC ARRANGEMENT \&VERY HARY TO ANILIN EJ
2) GRYSTAGLINE SOGIDS: PEGUGNR ATOM ARRANEEMENT \&THESE, WE STUDY)
3) FORCES 'TWIXT ATOMS

1) IONIC FORCES (SUC HAS Natl-)
a) COULOME ATTRACTION OF IONS
b) Super strong Fores

OHIGH MELTING POINT
(BLOW ELECTRICAL -THERMAL CONDUCTION
2) COVALENT FORCE (GHARED ELEETRONS) (SUCHASCLI) (CIA SHARES 2 SP EECTRONS)

3) METABBIC BOND-SHAREL ELECTRONS TWIXT

ALL ATOMS OF THE MATERIAL
4) VAN-DER-WAALS FORCE (MOLEEULAR CRYSTALS)

A VERY WEAK DIPOLE ATTRACTIVE FORCE
THESE MATERIALS ARE SOLID ONLY: AT
TEMPERATURES NEAR OO K
5) RERULSIVE FORCES LOUE TO EXLUSION PRINCIPLES QR or

IIDLATTICES AND CRYSTAL STRUCTURE
A)

TO GET ROM ONE LATTICE POINT TO ANOTHER:

$$
\vec{T}=m_{1} \cdot \vec{a}+m_{2} \vec{b}+m_{3} \frac{\dot{i}}{}
$$

$2 m_{1} m_{2} m_{3}$ ARE INTEGERS
 GPTS. ONLY © CORNERS
SAGE LATTICE: REGULAR REPEATING ARRANGEMENT OE POINTS SUCH THAT THE ARRANGEMENT OF ATOMS ABOUT EACH POINT IS IDENTICAL PRMITVE UNIT CELL - UNIT CELL HAVING SMALLEST POSSIBLE VOLUME
SINGLE CRYSTAL -LATTICE CONTINUES FROM ONE EDGE OF THE CRYSTAL
TO THE OTHER WITH NO BREAKS POLTCRYSTALINE-ISREAKS IN THE LATTICE

SPACE GATTICE SYMMETRY
(I) MIRROR PLANE
(2) ROTATIONAL SYMMETRY (M5OLO)

N=NUMBER OE EUUAE ANGLES OE ROTATION TO GET BACK TO ORIGINAL CONFIGURATION GEAGH ROTATION MUST YIELO ORIGINAL CONEIGURATIBA)

B) MILLER INOICES (CRSTAL CONFIGURATION)
(IFINO THE RLANE INTEREEPTS WITH 言, B, AND
F AS INTEGRAL MULTIALES AND RECIPROCATE
CLEAR FRACTIONS, RESULT: (h,k, \&)

THE PLANE WLL NTERSEET THE
$\bar{a} / h, \bar{b} / K, A N O E / L$
SPACING DETWEEN PLANS CONTAINMG LATTICE PONTS CEXAMPLES

$$
\begin{aligned}
& (1,0,0) ; d=a \\
& (6,1,0) j=a / \sqrt{2} \\
& (1,1,1)=d=a / \sqrt{3}
\end{aligned}
$$

GENERABH: $a=a\left(h^{2}+k^{2}+L^{2}\right)^{-1 / 2}$
c) X-RAY OETERMINATION (BY OIEFIRACTION)
OF UNIT CELLS

BRAGE'S LAW EOR
CONSTRUCTIUE INTEREERENCE:

for primitive cueic
IINTENSITY

$$
\begin{aligned}
& d=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}} \\
& \begin{array}{l}
\Rightarrow \min \theta=\frac{n \lambda \sqrt{h^{2}+k^{2} h^{2}}}{2 a} \\
\text { SE CONSTANT: } a=\frac{n \lambda \sqrt{h^{2}+k^{2}+h^{2}}}{2 \lambda N} \cdot
\end{array}
\end{aligned}
$$

FOR BODY CENTERED CUBIES:

$$
\begin{gathered}
\text { KHOCNS OUT } \\
\text { EVERYAK } \\
\text { ORAER }
\end{gathered}
$$

n.(hkt) cuge

Cubic cobic
Prmitive boorcenter facecgnter

OETERMINATION OF CRUSTAL GIUENA ANO 2e.
DASSUME FIRST PEAK IS IOOD..COMAUTE A ANO SEE IE THE OTHER PEAKS EIT WMH O ANE SOME $h k<$
2) ASSUME BGC. \Rightarrow FIRST PEAK O (110) \Rightarrow..
3)ASSUME FCE FFIRSTPEAK ($111 \Rightarrow \Rightarrow \ldots$
\vdots
IV) IONIC CRYSTALS
 FOR N ION PAIRS: $V=2 N R 3$
FOR OTMER. GRYSTALS:

$$
V=C N R^{3}
$$

For 2 lons: E Ea (ATTRACTION OR COULOMB)

- ER(REGUSION OREXCGUSION)

$$
E_{a}=\frac{q_{1} q_{2}}{4 \pi E_{12}}
$$

ION 1 (SODUM, (NEENTER)

$$
\begin{aligned}
& E_{C}=-\frac{e}{4 \pi G R}\left(\frac{6}{1}-\frac{b^{2}}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\cdots\right)
\end{aligned}
$$

INGLUOING ONLYTHE PART OFTHE ATOMINSIDE
THE CUBE GEVJENMETHODOF EUTTINE OFE
THE SERIESJ:

$$
\begin{aligned}
& E_{c}=\frac{-e^{2}}{\pi c_{0}}\left(\frac{3}{1}-\frac{3}{\sqrt{3}}+\frac{1}{\sqrt{3}}=\ldots\right) \\
& =\alpha \varepsilon^{2} / 4 T \operatorname{R} \\
& \alpha=\text { MOOELIN CONSTANT } C=1.747 \text { EOR NOCI) }
\end{aligned}
$$

On IS RELATED TO COMPRESSIBLITH

$$
\frac{d W}{d r}=-p d V=d E \Rightarrow \frac{d p}{d V}=\frac{d E^{2}}{d V^{2}}
$$

$$
\frac{1 K}{1 K}=-\frac{1}{V} \frac{d V}{d R} \Rightarrow k=-V \frac{d P}{d V}=V \frac{d^{2} E}{d V}
$$

$$
\frac{d^{B E}}{d t^{2}}=\frac{d E}{d R} \frac{k}{S V}\left(\frac{b R}{V V}\right)+\frac{d R}{d V} \frac{b V}{S V}\left(\frac{6 E}{R R}\right)=\frac{d E}{d R} \frac{d^{2 R}}{d V^{2}}+\frac{d^{2} R}{d R^{2}}\left(\frac{d R}{d V}\right)^{2}
$$

$\Rightarrow \frac{1}{R^{2}}=V \frac{d^{2} E}{d R^{2}}\left[\frac{d R}{d V}\right]$
VOLUME OF CRYSTAL: $V=$ ENR 3

$$
\Rightarrow \frac{d \mu}{d R}=3 C N R^{2}
$$

$$
\Rightarrow \frac{1}{R_{0}}=C N R_{e}^{3} \frac{d^{2} E^{2}}{d R^{2}}\left[\frac{1}{9 e^{2} N^{2} R_{e}}\right]
$$

$$
=\left.\frac{1}{\operatorname{CNRe}^{2}}\left(\frac{d^{2}}{d R}\right)\right|_{R=R}
$$

SOGUE EOR M.

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} E^{2}}{R_{R}} \|_{R=R_{e}}=\frac{N d e^{-2}}{4 \pi e_{\theta}}\left[\frac{n-1}{R_{e}^{3}}\right] \\
& \Rightarrow \frac{1}{K_{0}}=\frac{1}{9 c N R}\left[\frac{N a e^{2}}{4 \pi e_{0}}\left(\frac{n-1}{R_{e}^{3}}\right)\right] \\
& =a e^{2}(n-1) / 36 T C \in R e^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TOTAL P.E: } \\
& E_{T}=N\left[\frac{-\alpha e^{2}}{4 \pi E_{R}}+\frac{A}{R^{n}}\right] \\
& \left.\frac{B E R}{B R}\right|_{R=R_{e}}=0 \Rightarrow T=0 \cdot 1 K \\
& \Rightarrow E_{T}=\frac{N a e^{2}}{4 \pi E_{0} R_{e}}\left[1-\frac{h}{n}\right]
\end{aligned}
$$

VIBRATIONS
(1)

GOASHER FGRESS BETNEEN ATOMS:

$$
=4 \tan 2 / \operatorname{sit} / 2
$$

$$
\because \quad 4=\sqrt{\frac{4 B}{M}}+\pi N \frac{k Q}{2}
$$

(3) OMATCNIC
(M)

(4)

THE D.E. S
faresseat

$$
4=2 \pi+2 \Rightarrow
$$

$$
\begin{aligned}
& \text { FHEN } \omega^{2}=\beta\left(\frac{1}{m}+\frac{1}{M}\right)^{ \pm} B\left[\left(\frac{1}{m}+\frac{1}{m}\right)^{2}-\frac{4 \min ^{2} \mathrm{~K}^{2}}{M M}\right]^{\frac{1}{2}}
\end{aligned}
$$

MONATENIC LATTICE: LONGITUOINAL VIEAATIONS

- ANO N ARE PIRED
\Rightarrow MinKL $=\angle K N O=0 \Rightarrow K L=K N G$

\therefore DISCRETE K 与w
T) SPECIFIC HT. ON TNSUSATORS
A) CGASSICAL STATISTICAL MECMANIES
if OHASE SPACE: dREdxdydEdpxdpydp,
ZIFQUALBRIUM AISTRIBUTION MOST PROBABLE
OISTRIBUTICN GE PQINTS MAENE EELS
EXMPLE: 2 BOXES; 4 PARTICLES
aIALIN CELLA $\Rightarrow 1$ WAY
b) IN A, $4 N B \rightarrow 4$ WAYS
$\operatorname{CINA} A, 2 N B \rightarrow 6 \mathrm{HAYS}$

$$
P=N!/ H_{i} N_{i}=M_{i} \sum_{i=1} N_{i}=N \quad \text { ND } N_{i} \in P_{1}
$$

S)MAXWELL BOLTEMAN DISTRIGUTION:

PRACTION OR PARTIELES (OPPMPYPA)ANO POSiTION
*. Y I IN PMASE SPAEE din

$$
\begin{aligned}
& =\frac{d N}{N}=e^{-E / K T} d \Omega \int \operatorname{cop} e^{-E / K T} d \Omega \\
& =\frac{P^{2}+P^{2}+P z^{2}}{2 m}+\frac{1}{2 n}\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

TOTALE 5 N USRATINE ATOMS: U = SNKT
FOR 3 6RAM MOGES:

$$
\begin{aligned}
& U=3 N_{A}=T=3 R T \\
& N_{0}=A V A G A D R O S \text { NUMBER } \\
& R=10 E A L G A S C O N S T A N T
\end{aligned}
$$

FROM RUANTUM MECHANIE OSEILLATORS

$$
E\left(n+\frac{1}{2}\right) h f: n=0,1, \ldots
$$

B) EINSTEIN MODEL OE THE ATSM

11 ASSUMPTIONS
GALL ATOMS UIBRATE WITH SINELE FREQUENEY F
b)EACH OSCILLATOR IS 3 LINEAR HARMONIC OSEILLATORS LMUTUALHY L VIBRATIONS
GN HOMS \rightarrow SN LINEAR OSEILLATORS

WITH US $3 N E=E=A V R A E E$ ENERGY
2) OERIVATION

$\Rightarrow d U=e^{x}+2 e^{2 x}+3 e^{3 x}$...NUMERATOR
Now $\frac{d}{d x}\left[\frac{1}{1-e^{x}}\right]=\frac{e^{x}}{\left(1-e^{x}\right)^{2}}$
THus: $=\frac{1}{2} h+h+\frac{\left.1-e^{x}\right)^{-2} e^{x}}{\left(1-e^{x}\right)^{+1}}$

$$
=\frac{1}{2} h+h f\left[\frac{e^{x}}{1-e^{x}}\right] \frac{1}{2} h f+h f\left[\frac{1}{e^{x}-1}\right]
$$

$$
=\frac{1}{2} h+h f\left[\frac{c=1}{e^{h / k T}+1}\right]
$$

@T= $=e^{h \mu / \mu T=1 ; \Rightarrow C_{V}=5 R}$
© $T=0, C_{y}=0$

$$
\begin{aligned}
& \text { TOTAL ENERgY } \\
& U=3 N E=-\frac{3}{2} N H+3 N h+\left[\frac{1}{E^{h / K T}-1}\right] \\
& \left.c_{v}=\frac{\zeta U}{V}\right]_{V}=3 N h f \frac{6}{G T}\left(e^{h f / \kappa T}=1\right)^{-1} \\
& =\frac{3 N}{\left(N /\left(\frac{h t}{N T}\right)^{2} \frac{e^{h f / H T}}{\left(e^{h / k T}-1\right)^{2}}\right]} \\
& \text { For } 1 \text { MOLE (END) }
\end{aligned}
$$

$$
\begin{aligned}
& N_{i} e^{-E_{i} / K T} \\
& E=\sum_{i} e^{-E / M T / E} e^{-E / K T}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{n f}{2} \sum_{n=0}^{n} e^{-n h / k t}}{\sum_{n=0} e^{n h f / k t}}+\frac{\sum_{n=0}^{n} n h \sin \left(\frac{-n h f}{1 T}\right)}{\sum_{n=0}^{2} e-n A f / h T} \\
& =\frac{1}{2} h+\frac{h f e^{-h f}+2 h f e^{2 k t}+3 h f e^{-h t / k T}+\ldots}{1+e^{-h h / h t}+e^{-2 h f / k T}+\ldots} \\
& \text { ETH } x=-h f / k T \\
& \Rightarrow E=t h+h f\left[\frac{\left.e^{x}+2 e^{2 x}+3 e^{3 x}+\ldots\right]}{1+e^{x}+e^{2 x}+\ldots}\right]
\end{aligned}
$$

c) Debye Moost
1)ASSUMPTIONS
(a) SN LINEAR HARMONIG OSEIGLTORS
(b)MAXWCLE OISTRIBUTION
(c) FRERUENEY ASSUMPTIONS
(OSTANDNE WAVES OF EONTHNUOUS MEOIUM
(IHLL WVES TRMVEL OTM SAME SPEED
(Non-DISAEREIVE MEDIN)

$$
\begin{aligned}
& L=n \lambda / 2=n=1,2,3, \ldots \\
& f=V / \lambda
\end{aligned}
$$

2) OERIVATION

$$
\Rightarrow \mu=\mu_{0} \sin \left(\frac{n \pi x}{R}\right) \sin \left(\frac{n \pi u}{L}\right) \sin \left(\frac{n \pi I E}{A}\right) \cos (2 \pi f t)
$$

$$
n_{1} n_{1} n_{z}=1,2,3,4,
$$

OUGGINE GAEK INTO THE MAVE EQUATION:

$$
\begin{aligned}
& -\left(\frac{\Delta \pi}{2}\right)^{2}-\left(\frac{a v \pi}{L}\right)^{2}-\left(\frac{0 \pi}{R}\right) \mu=\frac{V^{2}}{V^{2}}(2 \pi+)^{2} \mu \\
& \left(\frac{\pi}{2}\right)^{2}\left(n_{x}^{2}+n^{2}+n^{2}\right)=4 \pi+4
\end{aligned}
$$

$\Rightarrow f=S T A N O N G$ WAUE FREQUENCIES

$$
=\frac{x}{2 a} \sqrt{n_{x}^{2}+n_{y^{2}} n^{2}}=\frac{2}{2} R
$$

 "hatTIEE" EMEH POINT - REREESENTINE A. STANOINA WAVE NODE

$$
\therefore R=e^{n_{x}} / 1 / V \text { ANO } d R=\frac{2 A}{V} d f
$$

TAKE A SPHERE SHELC

$$
\begin{aligned}
& \frac{8}{8}\left(4 \pi R^{2}\right) d R \\
& \text { = Fridr } \\
& =\frac{\pi}{2}\left(\frac{4 t^{2} f^{2}}{V^{2}}\right)\left(\frac{2 d}{V} d f\right) \\
& =\frac{4 \pi e^{3}}{V^{3}} t^{2} d t
\end{aligned}
$$

$d N$

3 VIBRATIONS
TWO TAANSUERSE WIT VELOCIPY VT ONE bONGITUOINA, WITH VELOETTY V_{S}

$$
\Rightarrow d N=4 \pi I\left(\frac{2}{y_{n}^{3}}+\frac{1}{V^{3}}\right) f^{2} d f
$$

$$
\begin{aligned}
& \text { NOY } 3 N=\int_{0}^{+d} d N \text { fl CUT OEE FREQUENCY } \\
& =4 \operatorname{TI}\left(\frac{2}{v_{3}}+\frac{1}{v_{i}}\right) \int_{0}^{f} f^{2} d f \\
& \Rightarrow f_{0}=\left[\frac{9 N}{4 \pi x}\left(\frac{2}{V_{3}}+\frac{1}{V^{3}}\right)^{-1}\right] \frac{1}{3}
\end{aligned}
$$

IF EACH OSEIGGTOR HAS THE MUERME ENEMEY OE EINSTEIN'S OSEILLATORS:

$$
E=h f /\left(e^{n f / k T-1)}\right.
$$

THEN TOTAGENERGY

$$
\begin{aligned}
U & =\int_{0} E d N \\
& =\int_{0} f\left(\frac{h f}{e^{h / h T}-1}\right) d N \\
& =4 \pi T\left(\frac{2}{V_{t}^{3}}+\frac{1}{V_{t}^{3}}\right) \int_{0}^{6} \frac{h f^{3}}{e^{h / M T}-1} d t
\end{aligned}
$$

substitutine $\left(\frac{2}{V_{3}}+\frac{1}{V_{4}}\right.$) PROM ExORESSION FOR FB,
HETTING $X=h f / K T G / N D X_{0}=h T_{0} / K T$

$$
\Rightarrow 9 N\left(\frac{k T}{h f_{0}}\right)^{3} k T \int_{0}^{x} \frac{x^{3} d x}{e^{x}-1}=0
$$

O Ear Hi T

$$
\begin{aligned}
& U \leqslant 9 N\left(\frac{k}{n f}\right)^{3} \int_{0}^{x a} \frac{x^{3} d x}{(x+1)-x}=x \approx 1+x=3 N K T=3 R T \text { vers } \\
& \Rightarrow C_{V}=\left.\frac{b 4}{5}\right|_{v}=3 R
\end{aligned}
$$

(3) Bor sow $T\left(\Rightarrow H x_{0}=\infty\right)$

$$
\begin{aligned}
& \text { U } 29 T\left(\frac{\mu T}{h f}\right)^{3} k T \int_{0}^{1} \frac{x^{3} d x}{e^{x}-1} \cdot \operatorname{Aut} \int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\pi / / 5
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow C_{v}=\left.\frac{6 u}{6 T}\right|_{v}=\frac{1}{5} \pi^{4} R\left(\frac{T}{\theta_{0}}\right)^{3}
\end{aligned}
$$

A 6000 EIT OF EXPERIMENTAL RESULTS. OO CHOSEN TO FIT CURUE AND OERENDS ON THE SUBSTANCE
21) DIELECTRICS
A)OEPINITIONS OE $\stackrel{\rightharpoonup}{p}, \vec{D}, k, \alpha$

1) P = QIPOLE MOMENT

$$
p=q^{2}
$$

2) \vec{p} = POLARIEATION: $\vec{P}=\frac{\sum_{i}}{\mathbb{Z}}=\frac{\text { DIPOLE MOMENT }}{\text { UNIT VOGUME }}$
3) $\vec{D}=D I S P A C E M E N T: \vec{D}=E E \cdot \vec{E}$

GOIEECTRIC DECREASES E IF CHARGE ON
THE PLATES IS THE SAME
4)K = DIELECTRIC CONSTANT

$$
\begin{aligned}
& \vec{D}=K E_{0} E E_{G E}+\vec{P} \Rightarrow H=1+\frac{E}{E_{\mathbb{E}}} \\
& S \text { OFPARIFATION }
\end{aligned}
$$

B) TYPES OF POLARIEATION

DELECTRONIC POLARIZATION

RELATIVE TO
2) IONIC POLARIEATION

3) ORIENTATIONAL DOLARIZATION wATRE: 9
shiet eorgits
NUELEUS

REORENTATION OF DER MANENT
OHOLE
C)LOCAL HIELDS DUE TO DIPOLES AND OTHER

CHAREES AT THE ATOMIC POSITION

1) in insulatone: $C_{v}\left[\left(\frac{\sum_{H}^{H}}{T}\right)^{N B}\right]$

WeThLs $\quad C_{V}=\left[\left(\frac{\operatorname{Lun}}{8 T}\right)+\left(\frac{\text { SUELE }}{S T}\right)\right]=\left(C_{V}\right)_{V I G}+\left(C_{V}\right)_{\text {ELE }}$

$$
P=\hbar k, K=2 \pi / \lambda ; P=P \text { HONON VIORATION }
$$

IN DIELEETRIC
\rightarrow El: E, LOCAL GIELO DOSITION OH HTOM
 DUE TOOTMER CHARGES
E = FIELDOPTDUETO PLATES
FIELD PT, OUE TO OUTSIOE
MATE OOLARIZATION CHARCE $\Rightarrow E=E+E$.
EMEFIELD DUE TO SHARGE ON CAVITY SUREACE

$$
\begin{aligned}
& \text { E W E FIELD NSIDE THE CAMTIES } \\
& \text { DUE TU INPIVIDUAL DIPOLES } \\
& \Rightarrow E_{10 c} E_{1}+E_{2}+E_{3}+E_{4} \\
& =E+E_{y}+E_{4}
\end{aligned}
$$

2) ES: DUE TO CAVITY SURFACE

$$
\begin{aligned}
& \text { - } \text { 6p.ds a } 9 \mathrm{pal} \text { (ENCLOSEA) } \\
& =O_{p} d s=-p \cos d S \\
& \Rightarrow O_{p}=S U R F A C E \text { OESTTY = PNA2 }
\end{aligned}
$$

4 UREA = $R d \theta 2 \pi R \cos A$

$$
\begin{aligned}
& \Rightarrow d q=\theta(2 \pi R 2 \ln \theta) d \theta \\
& d E_{3}=\frac{-1}{4 \pi e_{0}} \frac{d a}{r^{2}} \cos \theta \\
& E=\frac{p}{2 e_{0}} \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \\
& =\frac{-p}{2 e_{0}} \cos a_{0}=\frac{e}{36}
\end{aligned}
$$

FON A CUOIC LATTICE; EA $=0$

OIATOM IN E FIELD (CGAUSUIS-MOSSATI)

ATOMIC POLAKIZABILTY: $C_{A}=\frac{0}{\mathrm{E}_{\text {E }}} \mathrm{O}$ P PIPOLE MOMENT
FOR CUBIE BATTICE OF IOEMTICM ATOMS

$$
\begin{aligned}
& 1 \in+\frac{e}{E E} \Rightarrow p=(k+1) \epsilon_{0} E \\
& E_{i A E}=E(k-1) \frac{E}{3} \\
& =\left(\frac{k+2}{3}\right) \varepsilon \\
& \text { ANO } 16=\frac{1}{E_{0} E_{100}\left(\frac{n}{1+2}\right)} \Rightarrow \frac{1-1}{K+2}=\frac{1}{3 E_{0} E_{10 e}}\left\{\begin{array}{l}
\text { CGAUSUIS } \\
M O S S A T 1 \\
\text { QUTTON }
\end{array}\right.
\end{aligned}
$$

E) ONIC BOLARIEABILITY

$$
A P P A T A N E F I E D: \sin
$$

SHIFT O X IENS RELATINE TO NEGATINE IONS
Dibon Mament: $\mathcal{E E}$ Eec $=\beta x \Rightarrow x=\mathbb{L E} / \mathrm{E}$

$$
\begin{aligned}
& P_{\text {ronie }}=N O \times 2 \\
& =\left(N e^{2} / B\right) E_{i o c} \\
& \frac{k+1}{k+2}=\frac{p}{3 E_{d} E_{106}}=\frac{N \alpha_{102}+N E_{10 c} N \cdot E^{2} E_{10 c} / B}{B E_{10 c}} \\
& =\frac{N}{3 G_{0}}\left[x+\frac{0}{6}+\right] \\
& \omega=\sqrt{3 / m}
\end{aligned}
$$

F) ORIENTATIONAL POLARISATION

ALIGNMENT OF PERMANENT DIPOLES WITHE PIED PRESENT TENDS TO GIE UR OrIOLES. WHILE INTERACTIONS TWIXT THE DIPOLES THEMSELVES TEN TO RHNOOMIEE DIRECTION

$d 0$

$$
=e^{-U N T}=e^{\rho E \operatorname{CND} / \mathrm{BT}}
$$

db IS THE SOLIO ANGLE
GTwIAT θ AND d

$$
d \Omega=\frac{A R E A \text { SURF. ON SPHERE }}{R^{2}}
$$

$\Rightarrow p \overline{c_{0}}=$

$$
\Rightarrow \overline{\cot \theta}=\frac{\int_{-1} x e^{a} d x}{\int_{1} e^{a x} d x}=\frac{e^{a}+e^{-a}}{e^{a}-e^{-a}} \frac{1}{a}=\cot a-\frac{1}{9}
$$

$$
\begin{aligned}
& U=-p \cdot E=-p \cos \theta \\
& U=+\int U d N \\
& =\frac{\int p \cos \theta e^{\mu \cos \theta / k T d} \Omega}{\int e^{p \cos } / k T}
\end{aligned}
$$

FOR NORMAL T \& E $a \in 1,4 M D \operatorname{LEL}=9 / 3$

IE OTHER POLARIZATION IS THERE

For $H_{2} S$

6) $A \cdot C$ HIELDS IN A DIELECTRIC

$$
E=E \cdot e^{\sin t}
$$

$E F=m \frac{d^{3} x}{d t^{2}}=q e^{i \cot }-\beta x-m \gamma d t$
$B=R E S T O R I N G$ COEREICIENT
F= FUDEE FACTON
my dx = RAOIATION LOSS
64 MAGIc:

$$
\begin{aligned}
& =\frac{\text { EE }}{M} e^{i u t}\left\{\left[\frac{\omega_{0}^{2}-\omega^{2}}{\left(\omega_{0}^{2} \omega^{2}\right)+\gamma^{2} \omega^{2}}\right]: \dot{\beta}\left[\frac{\gamma}{\left(\omega_{0}^{2}-\omega^{2}\right)+\gamma^{2} \omega^{2}}\right]\right\}
\end{aligned}
$$

Now $p=q x \Rightarrow p=N q x=\frac{N a^{2} E 0}{M} e^{\sin }$

1)FOR A SLOW FIELD ($\omega \in \in \omega$)

$$
\begin{aligned}
& P_{\text {out }}=0
\end{aligned}
$$

2) NEAR w=U0

$$
\begin{aligned}
& P_{1 N}=0
\end{aligned}
$$

YIEGDing:

3) Hor usDcu, $p_{N}=\frac{N q^{2} E_{0} e^{j \omega t}}{4}\left[\frac{-\mu^{2}}{44+r^{2} \omega^{2}}\right] \Rightarrow 0$ SIMIGARLY PouT $\Rightarrow 0$
PWR = dyE $=F V$: PSAK
POWER NPUT MAXIMUM\& USU。

H) FERRO- ELEETRICITY
a) UNIT CEbLS HAUE NO BNUEASION CENTER OF SMMMETRY
b) ALTERNATINE POSITI ANS FOR SOME ATOMS IN UNITGEGL

COIDOLE IN ONE EELL IS STRONG ENOUGH TO PRODUEE
Dipore in NExT, ETE. CCO-OPERATIUE PHENOMENONJ
d) \Rightarrow POGARIEATION WITH AGL DIPOLE MOMENTS IN A GIUEN REGION OF CRHSTAL COOMIINJ AREIN THE SAME DIREETION
APPGMNG E EIELD

$$
\begin{gathered}
1 R=1+\frac{p}{G_{G}}=1+\left.\frac{1}{G_{0}} \frac{d P}{d E}\right|_{E=O} \\
k \left\lvert\, \frac{1}{1} \frac{1}{1}-1\right.
\end{gathered}
$$

$$
K=K_{e}+\frac{c}{T-T_{e}}
$$

MMAGNETIE pheceses

MAENETIETHTM M

C)MAEAETIE MOMENTS

$$
\begin{aligned}
& P_{m}=I A n_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sum^{\circ}}{n}(\operatorname{mvr})
\end{aligned}
$$

2)SPIN MAGNETIC MEMEAT

$$
\vec{p}_{5}=-8\left(\frac{x^{3}}{2 m}\right) 5
$$

- Si seim AMEuLGR MementuM g = Huce metor
G) DIAMAGNETISM OUE TO LARMOR PREEESEION

CF EGEETREN OREIT
Q11

$$
\begin{gathered}
\text { QREMT } \\
y=\operatorname{Pn} B=\frac{5 t}{b t}
\end{gathered}
$$

EGEGTREN EMGLE WILG GHANEE TY TITT N TMMEMUCA AS WOUGD A TOD

HETH Un d /dt (LAMAR ERER)

- $\|d \underline{L}\| d L=L$ Minddtw un

$$
=1 E x \operatorname{Li}_{4} d t
$$

$H u_{L}=\left(\frac{a}{2 m}\right) B$
2) NDUEE AHGUBAN MGMEMTUM (OMMAGAETE EEBEN) - hll IN EGHETRAN's ondiva

$$
\begin{aligned}
& \text { (} \vec{m}_{m}=\frac{-0}{2 m} \text { Lina }
\end{aligned}
$$

spuche of radus r

$$
\left.\begin{array}{ll}
r^{2}-x^{2}+y^{2} \\
p^{2}+y^{2} & -2 x^{2}
\end{array}\right)+p^{3}=\frac{3}{5}
$$

$\Rightarrow P_{M=}=\left(\frac{2 m}{2 m}\right) m u_{\mathrm{M}}\left(\frac{2 r^{2}}{} \mathrm{~m}^{2}\right)$
ASSUME N ATGMS PER UNIT VOGUME

$$
\begin{aligned}
& M=N P_{1} \\
& X=M / H=N P_{M D} / H
\end{aligned}
$$

D) MEUBAR MOMENTUM
 QuMTUM NHMSENE
 GUNATUM NUMAER ETM
 QUAUNTUM NUMDEM E/a
EIENEREY GEVEGS MNH THE GOMR MAENGMRON
TOTA MAENETIGMOMENT:

> APPELCATUEN OE F FIELO TO HTM WITM
> MASNETIE MOMENT

ExAMPLE: EEF J W2

$$
\Rightarrow m, \quad 1,12,1 / 2,-12
$$

Now $u=-6 m \cdot R$ SUSENEAEY

$$
\begin{aligned}
& \text { ANO }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore U_{1}=1 \min \\
& =8\left(\frac{2}{6}\right)(-3)=1 B \\
& -3-6\left(\frac{2 \pi}{2 m}\right) B
\end{aligned}
$$

HABNETAON
F) PARAMA NETISM (BOTVEMAN DISTRIBUTIONI
1)
wTH © EMme

$$
3 x=\beta \cdot B R / K T
$$

for N ATOMS OER UNIT VOLUME

$$
\mathrm{M} \cdot \mathrm{~N}(\mathrm{Dm})
$$

7

 of partreses wile de whene pals untesp

- MAU K=

3) EXPERIMENT

MERONMUE OF PREA. PHOTONS O ENERGY E.M. MEREASINE B MCREAESB AL

GTTE BoInt WHERE \quad GPG:hH, TMERE:WHL BE RESENANT HSERETION, H WMIEM PONT B. MAY E Computed.

LKNOWN ASELETHON PARAMETRIE RESONANEE)

$$
\begin{aligned}
& \Rightarrow X=M M=C / T \quad(C U Q 1 E G L A M) \\
& \text { Ko Pewnernent }
\end{aligned}
$$

TIII EERROMAENETISM (BPONTANEAS MAENETISM WHH NO AMPGELE EIEG)
AM UERY LARGE COMPARED WITM PARAMAENETIE

SUSGEPTIUILITY OF EEROMAGNETHE

cunie WEIE

PERMOMAGNETES: 2-EETE
B) welss
cocpramius EBEEET:MAEMETLA MOMEMTS TENS

$$
H_{H L}=H+A M \text { (M OUE TO TGICMENT) }
$$

ABOVETMHERITIGA GEREROM CEEOMEMAMAM

$$
\begin{aligned}
& \chi=M / H+5= \\
& \Rightarrow \frac{E}{T}=\frac{M}{H M}=\frac{M}{H \cdot M} \\
& \Rightarrow M=\frac{e^{m}(H+M M)}{T}+7=\frac{M}{H}=\frac{e}{T E}=T c \in C
\end{aligned}
$$

- RMAMLE THE MYOROEENMGEEULE

TuO poselringhes
 PRMNEMLE TENDE TO FEREE EM APARE.

 ovoEsite spin (AMTH PARAGGEG)
IN FERRCM TME PARALLEL CONPIBUNATIBN MAS
 MYSTERESIS
 GOMNDR ES MON'T REMAIGM EMAETLY 4 OEFORE THE HELD I O PPLIEO CLEEy With A Net

RIFAEE EGETRON MMEOY
DEVISE a ORUOE Nice

MODEL

MoEIBTTY: $\mu * V_{0 / E}$
cUnPRNT CENGITY:

$$
|J|=|A \cdot| n e^{-} d
$$

(umithara)
-HM罗 baw:

$$
\begin{aligned}
& V=I R=\frac{A R}{A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { p: REEHTMMTY } \\
& \text { ow yow convuetiuity } \\
& \text { O } 1 / 6 \\
& \text { = nevols }
\end{aligned}
$$

BJTAANEIENT AbMGYEIS
-lois onop in Air (!)
$\sum E=d \in\left(\frac{m}{2}\right) V_{b}=m \frac{d V_{a}}{d t^{2}}$
a) Fuppose e MAI EEEN ON \Rightarrow Va(0)

TURN IT. OEE

$$
m d V_{n}+\frac{m}{7} V_{0}=0 \Rightarrow V_{0}=V(0) e^{-t / q}
$$

- s Yime Eon tide aricturlocity

To DROP Ye OF IF'S NITIAL VALUE (E) OR THE ELETMRONS HAVEN'T COLLIOED HETER P SECONDSI
3) WhTH FIELO ON

$$
\begin{aligned}
& A E-\frac{m}{7} V_{0}=m \text { dV_ }=0 \\
& \rightarrow+E=4 V_{B}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mo obnem/m }
\end{aligned}
$$

E)SPEGRIE HEAT AT HGH TEMPERATUMES

GOR WRE ELETRONH, N NEW DEEREEL OE FREEOOM. CGA罗EIES BMY

$$
\epsilon_{v}=3 R+\sum^{2} e^{\circ}
$$

MOT so! FME RYEE ELETMON CONTMAUVE VERY LTTLE GEEAEICMEAT TO THE SYETEM. SOMETHEN IS INHIEIYNG THE ABSORETION Qr THE FREELECTRONS. GINHIOITINE
FME MOMENE ALLIGNMENTSS
E) frer EbETRONE iN M METML

EGEGTRONS COMFINEGTO BOX

$$
\begin{aligned}
& U=0 \text { NinE } \\
& U=\infty \text { OUSEE }
\end{aligned}
$$

$$
\Rightarrow \frac{g^{2} u}{8 x^{2}}+\frac{5 y}{5 y}+\frac{2 y}{2}+\frac{2 m}{\sqrt{2}}=\psi=0
$$

$\therefore \psi=C \sin \left(\frac{n+\pi x}{L}\right) \sin \left(\frac{n u \pi y}{L}\right) \sin \left(\frac{n \pi t i}{L}\right)$

$$
\left.\left(\frac{n \pi}{2}\right)^{2} \psi-\left(\frac{n+1}{2}\right)^{2}-\left(\frac{n \pi \pi}{2}\right)^{2}=-2 m\right)^{2} \psi
$$

$$
\Rightarrow E=\frac{\operatorname{m}^{2}!}{2 L^{2}}\left(n n^{2}+n n^{2}+1\right)
$$

 Asse $-\frac{p^{2}}{2 m}=\frac{P_{0} \operatorname{Dr}^{2}+p^{2}}{2 m}$ ≥ 1
$1 "$
F)PEMMi OIRAC STATISTICS ANO FERMI FuNENAN

DIBSUMTIONS
a) EANIT OISTINEUISH ONE ELEETRON FROM ANOTHER (AS EPMOSED TO BOLTEMAN
b) ExGlUSION PRINEIPLE.
2) FERMI EUNETION: PROAMEILITY THAT THE STTE OE ENENGY.E. IS DCEUPIEA BY AN ELECTRON:

$$
f\left(\varepsilon_{i}\right)=\frac{1}{\operatorname{cy}\left(\left(\varepsilon_{i}-e_{E}\right) / \Gamma T+1\right.} ; \varepsilon_{i} \cdot \mid k T
$$

E, Enentrow bute havine-somo ehance - aina occupieb.
$O 0^{0} k=1 \quad 1+(E)$
3) FINDING E

cuaic rupe battice each PONT NERAESENTINE 3 STATES. AGG DONTE N WibE RMA ARE
occupies OT:OM

$$
R_{m A x}=\left(n_{x}^{2}+n_{x}^{2}+n z\right)^{t}=\frac{4 \sqrt{2 m E_{f}}}{\sqrt{n}}
$$

ON $R^{\text {man }}=2 m L^{2} E_{H} / H^{2} \operatorname{H}^{2}$
THENUMAER O O CGUMEL THFES HAMME
ENEAEY LESS THAN EH

$$
\begin{aligned}
& =2\left[\frac{1}{8}\left(\frac{4}{3} T R^{4}+4 x\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
C= & \operatorname{Vm}^{2}\left(\frac{34}{L^{4}}\right)^{2 / 3} \\
& =\operatorname{th}^{2}(3 \pi M)^{2} 3
\end{aligned}
$$

* 1 TO 10 EUETRON NOLTSM

GOL (E) NA N(E)

1) G CEJEMUMBER OE STHES WITM GNEMEY

N(E)dEwNuMBER OE ELETRONS WTH ENERGY TMMT E AND EWE
$\Rightarrow f(E) g(E) d E=N(E) d E$
 - 0 ERE E E

$$
\begin{aligned}
& N=\frac{L^{3}}{T^{2}}\left(\frac{2 m c_{6}}{h^{3 / 2}}\right)^{6} \\
& =8\left(c^{2}\right)=c e^{\prime}=\frac{h^{3}}{2 \pi}\left(\frac{2 m}{\pi^{2}}\right) \text {. }
\end{aligned}
$$

mon 4 Po:

HMROACMES A OELTBMAN DISTRIBUTION:

3) AvERAGE GLESTRN

ENEREV
a) (1) Fok
b) TDO K

- E increases a micht wipm increasine t
H)SPEGFIC HEAT

$$
\begin{aligned}
& \text { PECFIC HEAT } \\
& U=N E=N E \cos \left[1+\frac{5 \pi}{12}\left(\frac{1 T}{E_{0}}\right)^{2}\right] \\
& C_{v}=\left.\frac{d U}{d T}\right|_{V}=N E \cos \frac{57^{2}}{\left(\frac{1}{2}\right)^{2}}
\end{aligned}
$$

POR 1 MORE:

$$
\left(C_{V}\right)_{\text {REE }}=R 187 \pi^{2} / 2 E_{H 0} \ll \frac{3}{2}
$$

$$
\therefore c_{v}=\left(c_{v}\right)_{v i s}+\left(c_{v}\right)_{\text {ELE }}
$$

$$
\text { \& } A T^{3}+B T \text { CAT Low } T
$$

$$
B=R k T^{2} / 2 E_{6}
$$

mat THUS Expermentally compute Efo

$$
\begin{aligned}
& =\frac{\int_{0}^{0} \frac{c^{\left(e^{3 / 2}\right.} d t}{e^{(E-p) / W t+1}}}{N} \\
& \Rightarrow E-\operatorname{Eos}^{N}\left[1+\frac{5 \pi^{2}}{2}\left(\frac{x T}{E_{f}}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow E_{0}=\frac{5}{5}
\end{aligned}
$$

1) H BAEE AND TME EEMMI SURTAEE p = TH EGE. MoMENTHM

HERMB-SUREAEE NN K SPAE

TME MPAUEA E EIELD WME SMIT TH ERAM Sunfice
THARAMAGNETISM OF BREE ELEGTRON

$$
\left|p_{m}\right|=q\left(\frac{-1}{2 m}\right) s
$$

$$
\Rightarrow\left(P_{m}\right)=\left(\frac{\cot }{m}\right)
$$

Uspmespand (cou Enercy)
MOETERMMATION BESUSCEPTILITY@TBok

WITH A FIELS

Name BOB MARKS
Solid Static Poco
2．Briefly utplain the nation of the Golding tomes duties atoms：
（a）wrolent forces
COVALENT BONDING RISES WHEN ATOMS SHARE ELECTRONS，THE DIATONIC GASES BEING AN EXAMLE（ $\mathrm{w}_{3} C l_{2}$ ） mature 等 force？
（4）the uppodine fore
THE REPULIVE FORCE RISES FROM

THE EXCLUSION PRINCIPLE：NO TWO I - QUANTUM PARTICALS IN A QUANTUM SYSTEM MAY HAVE
 （NA：$S= \pm \frac{1}{2}$ ）

 Why？THE Van der Challis crystal would hour e the lower melting point，in that Lam der Wash fave act＝feflentue lay？only on malinia trodety which faledifg
3. Ginien a promula undou cypatalik.
 colbi strustine anitr Lothie cometrit $a=2.0 \%$
 of all fonce paralel $\%$ th
 owe sdown
PLANE WIGINTERSECT@ $\frac{a}{h}, \frac{b}{k}, \frac{\bar{l}}{l}$
$\Rightarrow \infty \frac{1}{4 h}, \frac{1}{2 k}, \infty$

$$
\left(\frac{1}{4}, 0\right)^{4 h}=2 k, 0 \Rightarrow(2,10)
$$

$$
C 1 \frac{2}{3}
$$

(4) If thi polynugetitemé solí í incudíd at marrín suythe - vidx x-nay o mamelangit

ad $\sin \theta=n \lambda \quad$ (BRACGS LAW)
$\sin \theta=\frac{n}{2 d}$

$$
d=\frac{a}{\sqrt{h^{2}+k^{2}+k^{2}}}
$$

$$
\sin \theta=\frac{n \lambda}{2 \sqrt{2}}
$$

$$
d=\frac{9}{\sqrt{2}}
$$

for all planes?

$$
\begin{equation*}
E=N\left(-\frac{x_{1}^{3}}{\pi \varepsilon_{0} R}+\frac{4}{k^{2}}\right) \tag{61}
\end{equation*}
$$

whí at ahmete your (0 K $)$ hecomen

$$
E=-\frac{A \cdot t^{2}}{4 \varepsilon_{0} R_{e}}\left(1-\frac{1}{n}\right)
$$

 requation (II, Moncuentiny the youllune fonda Retweth

$$
\begin{aligned}
& E=N\left(-\frac{\alpha e^{2}-1}{4 \pi \sigma R}+A e^{-1 / n}\right) \\
& \left.\frac{\zeta E}{S R}\right|_{R=R}=0=N\left(\frac{\alpha e^{2}}{4 \pi \varepsilon_{0} R^{2}}-\frac{A}{n} e^{-R / n}\right) \quad, T=0^{0} / R \\
& \frac{\alpha e^{2}}{4 \pi \epsilon_{0}} R^{2}=\frac{A}{n} e^{-R / n} \\
& \Rightarrow A=\frac{n d e^{2}}{4 \pi E_{0}^{2}} e^{R / n} \\
& \therefore E=N\left(\frac{-\alpha e^{2}}{4 \pi R_{0}}+\frac{n \alpha e^{2}}{4 \pi R^{2}} e^{R n}\right)^{e} \\
& =10 \frac{N \alpha e^{2}}{4 \pi \in R}\left(\frac{n e^{R / n}}{1}-1\right)
\end{aligned}
$$

 with the end arma fried, and axppren the rusut be atrme $B=10^{-26} L^{2}$, the ypon hotinem atime $a=4 \times 10^{-10}$
 á $\beta=10^{-1 / n t} \mathrm{~A} / \mathrm{mut}$.

 and the wancluyt of thece wnwe (ynyon on $\omega=205$ wenose $A=20 / d$.

$$
\left|v_{s}\right|=\left|\frac{5 c}{5 k}\right|=\left|\frac{a}{2} \sqrt{\frac{\beta}{m}} \cos \frac{5 a}{2}\right| \frac{-2 \pi}{a}<1<\frac{k \pi}{a}
$$

$V_{\text {GMAx }}$ is OKFO \Rightarrow FASTERQLOWER FREQUEVCG Q K

 FOR STANOINO WAVE: $\sin K \ell=0$

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow k l=\pi)^{2} \pi \cdots,(n-1) \pi \\
\Rightarrow k=\frac{\pi}{2}, 2 \pi
\end{array} \\
& \Rightarrow k=\frac{t}{e}, \frac{2 \pi}{e} \\
& \omega=\sqrt{\frac{B}{4}} \operatorname{An}(n-1)
\end{aligned}
$$

Soke Stat Parsi - Tent IL

A. Whit apungetain are build tin the model?

THE ATOMS MBRATE AT A SINGLE FREQUENCY
2) ASSUMPTION OF BOLTEMAN DISTRIBUTION
3) EACH ATOM ACTED AS 3 MUTUALLY PERPENDICULAR OSCILLATORS (in N ATOMS $\Rightarrow 3 N$ OSCILLATORS)

$$
E_{2}=\left(n+\frac{1}{2}\right) h f ; n=0,1,2,3, \ldots 6 / 6
$$

 vibration atom

D. Onthié, vikut ut the motemotion Lotivin, the prododus for detruinín an ayprocen for. the specifue deat c_{p} from the averace uifruition endy.
(1)SURSTITUTE E: INTO E EXPRESSION
(2) CANCEG EXPODENDENTIALS FOUND? IN GOTH NUM. AND DEN.
(3)LET $X=h f / K T$
(4) EXPAND NUM. ANO DEN. NOTICING DENOMENATOR $=\left(\frac{1}{1-e x}\right)$? AND THAT THE NUMERATOR IS ITS DERIVITIV AND SUBSTITUTE IN INTEGIRAL
(5) U= 3NE SO MULTIPLY E BY BN TO OETAIN U. EVALUATE INTEGRAL.
(6) $C_{V}=\left.\frac{5 U}{8 T}\right|_{V}$

ENSTENS MOOEL OROPPE O' OFFA LITTLE TO EAST AT THE ORIGIN, AND COULD AAVE BEEN INPROVED BY CONSIDERING MORE THAN JUST A SINGLE AREQ. CAS OID DEBYE).HE MIGAT HAVERERIED PARAER DISTRIBUEIONSMALSE SOME SE THE

II. Potruifatims of Dielactivi

1)ORIENTATIONAL - DUE TO THE GEOMETRY OE A MOLECULE, IT IS LOPSIDED IN THE SENS OF CHARGE, SUCH AS WATER:

2) ELECTRIC -DUE TO NON-SYMMETRIC ROTATION OF ELECTRONS ABOUT THEIR NUCLEUS.

3) IONIC-RISES FROM ATTRACTION OF 10 NS . EX: $\mathrm{Na}^{+} \mathrm{Cl}^{-}$
?

Shift of orin due to applet fried
B. Given a dielectric which has a cubic heroines structure of on s

$$
\begin{aligned}
& \vec{D}=\epsilon_{0} E+\vec{P}=K \epsilon_{D} \vec{E}=\frac{\epsilon_{0} E+\bar{P}}{\epsilon_{0} E}=1+\frac{p}{\epsilon_{0} E} \\
& E_{\text {LOC }}=\frac{E_{1}+E_{2}+E_{3}+E_{4}+\quad(\text { cuen }) ~}{E_{0}} \\
& =E+E^{-3}
\end{aligned}
$$

$$
a z=\frac{p}{z_{\operatorname{Lec}}}
$$

 Gi.e. why the sudlem conce ot $\cdots 100^{\circ} \mathrm{k}$ and undy the decrenves ot Nojhen TT P)
FOR SOME REASON, DIPOLES SUDDENLY BECOME ALLIGNEOYT AT 100° AND AS TEMPERATURE INCREASES, MOLECULAR AND THUS OIPOLE VIBRATION INCREASES, DELTNINGTHE THE OIPOLESMNTO TAE LIMFEROFM WHATEWER THE PREVAILNGG POCAAVEAKHHY ó = CH1S)

Soni Stat PRpmi - Tret II
I. Mapactian in Solita (Indultara)

 Slon trat the opebinition of a monetis fréld B B madný anpbo with the dinetion of \vec{l} cames the onbite tom precese about the dividitn of $\overrightarrow{\bar{j}}$ wite uqpak fugmeny $\overrightarrow{\omega_{i}}=\left(\frac{2}{3 \times \infty}\right) \stackrel{\vec{s}}{5} \quad$ (and/abe.)

$$
\begin{aligned}
& p_{m}=-\left(\frac{e}{2 m}\right) l \\
& r=p_{m} \times \vec{B}=\frac{d \vec{L}}{d t}
\end{aligned}
$$

$$
1 \overrightarrow{0} \frac{1=}{1-1 d b} \omega^{2 E T}=d \theta / d t
$$

Now $d \vec{L}=|p m \times \vec{B}| d t$

$$
=p_{m} \sin \phi B d t
$$

$d L=\tan (L \sin \phi) d \theta$

$$
\begin{gathered}
P_{m} \operatorname{sip} B d t=L \operatorname{Lopd\theta } \\
\omega_{L}=\frac{d \theta}{d t}=\frac{P_{m} B}{L}=\frac{\left(\frac{2}{2 m} L B\right.}{L}=\frac{a}{2 m} B
\end{gathered}
$$

a Litat uogne Affinats

THERE WILL BE AN ADDITIONAL NUS ORBITAL a angular momentum induced

$$
\begin{aligned}
& \vec{B}=L_{0} \vec{H}+\underbrace{}_{\text {OUETO ref }}
\end{aligned}
$$

 SPONTANEOUS MAGNETIZATION IS A RESULT OF COOPERATIVE ALIGNMENT OF ADJACENT DIPOLES mat EACH GROUP OF COOPERATIVELY ALIGNED DIPOLE CONSTITUTES A REGION OF NET MAENETIE nATION． EACH ADJACENT REGION COOPERATIVEI ALIGNS（SOMEWHAT），CAUSING A NET MAGNETIEATION，M． （IN PRESENCE OF B FIE GD）

meta causes Dlogitment of apis momantio mir seigherm toms

II．Fur Elatan Thus of Mizar
 electives conducting $T=\frac{1 t^{2} T}{d i}$ and under sheet dome clanquáy 雄 Amperstions Ans or it？
T IS THE TIME（IN TRANSIENT ANALYSIS）FOR INITIAL DRIFT VELOCITY TO REDUCE $B Y A$ FACTOR OF $1 / \mathrm{C}$（IN THE CASE OF

THE HIGHER THE TEMPERATURE THE LARGER VD，（THE ELECTRONS MOVE FASTER）AND THUS THE GREATER CHANCE FOR COLISION ERGO，THE SMALLER

 tat the Femi unyy at $T=0 \%$ n nelt to th momber N of fues elestrmen pen uit andeme L^{3} by:

$$
\frac{N}{L^{3}}=\frac{\pi}{3}\left(\frac{2 \sin E_{0}}{\hbar^{2} N^{2}}\right)^{\frac{V}{2}}
$$

$$
\begin{aligned}
& \text { SPHERE } \\
& \text { SEERONIUS } \\
& \text { OF RMAX } \\
& \hline
\end{aligned}
$$

$$
R_{M A X}^{2}=\left(n_{x}^{2}+n_{x}^{2}+n_{z}^{z}\right)_{M A x}=\frac{2 m L^{2} E_{E_{0}}}{\hbar^{2} \pi^{2}}
$$

EACH POINT REPRESENTS Z STATES.

$$
\begin{aligned}
\Rightarrow & =\frac{1}{8}\left[2\left(\frac{4}{3} \pi R_{M A x}\right)\right] \\
& =\frac{\pi}{3} R_{M A X}^{3} \\
& =\frac{\pi}{3}\left(\frac{2 m^{2} E_{B}}{h^{2} T^{2}}\right)^{3 / 2} \\
& =\frac{\pi}{3} L^{3}\left(\frac{2 m E_{E}}{h^{2} \pi^{2}}\right)^{3 / 2} \\
N & =\frac{\pi}{3}\left(\frac{2 m E_{E 0}}{h^{2} \pi / 2}\right)^{3 / 2}
\end{aligned}
$$

$$
20 / 20
$$

 natural of one $d E$ rypentan in the tony E.

$$
f(E) g(E)^{2}=N(E) 4 E
$$

THE FERMI ENERGY (EA) IS THE ENERGY AT WHICH THE PROBABILITY OF OCCUPANCY OF AN ENERGY LEVEL BY AN ELECTRON IS 50%
(2) Guin then sage sitande dE At bow ensugien Er and E_{2} indue $E_{2}=2 E_{1}$. Whet ie the wether ot er

For hi ha lowe? $\frac{C \sqrt{E}}{C N E R G E S:} \frac{\sqrt{2 E}}{\sqrt{E_{1}}}=\sqrt{2}$

Sood Sith Plapeín - Text IK
(1) The figuse shows the finct theo Erieloroun yonse for election wave I vectore in a ubic lastici (umit cell culis ethe a)
 spectoro Lummé a paragnition wave vestre tis av shoum?

Jantion you ans (ONFRAGTED)

$$
\begin{aligned}
& \text { BRAGGS LAW YIELDS } \\
& \lambda=2 a \sin \theta \text { (POR CONSTRUCTVE } \\
& k=\frac{2 \pi}{\lambda} \\
& \frac{2 \pi}{K}=2 a \sin \theta \Rightarrow K=\frac{2 \pi}{\text { Ras }} \text { (IN }
\end{aligned}
$$

$$
\begin{aligned}
\vec{D} & =\epsilon_{0} \vec{E}+\vec{P}=k \epsilon_{0} E \Rightarrow k=\frac{\epsilon_{0} E+\bar{p}}{\epsilon_{0} E}=1+\frac{p}{\epsilon_{0} E} \\
E_{L O C} & =E_{1}+E_{2}+E_{3}+E_{\eta}+(\text { Ins }) \\
& =E+E_{3} \\
& E_{3}=
\end{aligned}
$$

$7 / 25$

$$
\alpha ;=\frac{p}{E_{\operatorname{Lac}}}
$$

 bice. why the sunder change at $9100^{\circ} \mathrm{k} \mathrm{and} \mathrm{undy}$, Roughen T PI
FOR SOME REASON, DIPOLES SUDDENLY BECOME ALLIGNEOY AT 100°. AND AS TEMPERATURE INCREASES, MOLECULAR AND THUS DIPOLE VIBRATION INCREASES, DEL TNANGTHE
DIPOLES TO TH M OF RARODOMNESS ACAINKFROM WHATEWER THE PREVAILING POLARIEABHMY OFHG11S)
(3) Ar eltcion is moviang is the x divation in a pensodis
 Deráne un expression' fon its ascelentiom as a fromoteon' of \vec{F} and tite Ewa. A unve for motion' abong the usen '

$v=\frac{d u}{d K}$

$a=\frac{d v}{d t}=\frac{d^{2} \omega}{b k S t}$ t ustata

$$
\begin{aligned}
E & =h f \\
& =\hbar \omega
\end{aligned}
$$

$$
F_{x}=m * a \Rightarrow a=\frac{F_{x}}{m}=\frac{10}{m p} \quad d^{2} E=\hbar d^{2} \omega
$$

$$
m^{*}=\frac{1}{h}\left(\frac{\delta^{2} k}{6 k^{2}}\right)^{-1}
$$

$$
F_{x}=m * q
$$

$h=\frac{F_{x}}{m k}=\frac{F_{x} K^{2} E^{2} E_{m}}{s}$

 (13)

Explani'?
(4) From the expressionis $a=N_{c} e^{-\left(E_{c}-E_{F} / / l T\right.}$ fon the mumben of electione pen umit winume in'te wndwation thand, and $p=N_{n} e^{-\left(E_{F}-E_{i}\right) / h_{T}}$ m'tie walince bound:
(a) derrse an equation neletiag the constuctimity of ar intrinisi semiconduction $\overline{\%}$ the Enargy gag and temperamene (anorag othe thane), $n=p$
BACK

- our pronlous.
 tir mesouse the therigy gope by macouning conducting an a functiono of tivipenatane.

1/
(5) What is the "Meisanen pfeict" in mpenasmanctions? Py suptrcnotror

CUTO RFOATARPENESATIES

$$
\begin{aligned}
& n=N_{c} e^{-\left(E_{G}-E_{f}\right) / k T}, \quad p=N_{0} e^{-\left(E_{0}-E_{0}\right) / k T} \\
& \sigma=p \text { e } \mu_{n}+p \text { e } \mu_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { = vicyat Naple e-ce Esidn }
\end{aligned}
$$

b) Derive an expression for the electric field intensity E at any position x along the positive x axis, starting from the expression for V found in part (a). (12)

STATISTTCAL MECHANICS

Solids, like gases, are made up of large numbers of interacto ing particles. In the absence of any information about individual particles one can still predict with accuracy many properties of such an assembly, using the laws of probability and statistics. One of the central problems of statistical mechanics is concerned with the prediction of the most probable energy distribution of a large number of interacting particles. This distribution, called the "equilibrium" distribution, has been found to have such a high probability of occurence when the number of particles is large, that significant deviations from this distribution are very unlikely (but not impossible).

The energy E of an individual particle is the sum of its kinetic energy and its potential energy. The kinetic energy depends only on the particle's momentum and the potential energy. only on its position so that its energy is completely specified by six quantities, three momentum components (e.g. $p_{x} p_{y}, p_{z}$) and three position coordinates ($e . g$. x, y, z). At any instant, each particle of the assembly will have six values associated with it, one for each of the quantities mentioned above. The task of finding the energy distribution then becomes one of finding the numbers of particles having vaiues between x, y, z, p_{x}, $p_{y}=p_{z}$ and $x+x_{s} y+\Delta y, z+\Delta z, p_{x}+\Delta p_{x}, p_{y}+\Delta p_{y}{ }^{2} p_{z}+\Delta p_{z}$:

For example, suppose the particles are free so that the potential energy $U=0$ for all particles (an ideal gas). In this case the energy of the particle is completely specified by its momentum components; it may be represented by a point in "momentum space" as shom below.

One may think of this monentum space as being divided into "cells" of dimensions $\Delta p_{x} s \Delta p_{y}: \Delta p_{z}$ and then try to find the most probable distribution of points among the cells in order to detemmine the energy distribution. In general. $U \neq 0$ and the cells are six dimensional cells in a six dimensional "phase space".

Suppose now that one has N particles and wishes to determine the most probable distribtuion of them among cells of energy E_{1} : E_{2}, E3. etc. The probability of a particular distribution is proportional to the number of ways W of making the distribution. and it can be shown that if the particles are distinguishable from each other

$$
\begin{equation*}
W=\frac{N!}{N_{n}!N_{2}^{!} N_{3}!\ldots} \tag{1}
\end{equation*}
$$

Where $N_{1}=$ number of particles in cell 1 , etc.
Example: Suppose there are 4 particles to distribute between 2 cells.
(possibility l): all 4 in cell 1 ; only one way to do it

$$
W=\frac{4!}{4!0!}=1
$$

(possibility 2): 3 in cell 1 , 1 in cell 2 ; four ways to do it.....with particle a, b, c, or d in cell 2

$$
b \quad W=\frac{4!}{3!1!}=4
$$

(possibility 3): 2 in each cell; six possible combinations identify them yourself
$W=\frac{4!}{2!2!}=6$
(possibility 4): 3 in cell 2; similar to possibllity 2
(possibility 5): all 4 in cell 2 ; similar to possibility l
In this case possibility 3 describes the equilibrium distribution and it is not much more probable than possibilities 2 or 4 (this would not be the case if there were a large number of particles and cells).

In order to obtain a general expression for the equilibrium energy distribution, one maximizes W (equation 1) with respect to variable $\mathbb{N}_{1}, \mathbb{N}_{2}: \ldots .$. (LaGrange's method of undetermined multipliers) with the restrictions

$$
N=N_{1}+N_{2}+N_{3}+\ldots \ldots
$$

$$
\begin{gathered}
-3- \\
E=N_{1} E_{1}+N_{2} E_{2}+\ldots \ldots=\sum N_{i} E_{i}
\end{gathered}
$$

and gets the most probable energy distribution

$$
\begin{equation*}
\because \quad N_{i} \propto e^{-E_{i} / K T} \tag{2}
\end{equation*}
$$

Where N_{i} is the number of particles having energy E_{i}. This expressm ion is directly useful only where energies are discrete so that a particular energy E_{i} is associated with each cell. If the energy is continuous the cells must be considered infinitesimel and of volume d Ω in six dimensional phase space (e.g. In cartesian coordinates $d \Omega=d p_{x} d p_{v} d p_{z} d x d y d z$). The number of particles per infinitesimal cêll is then

$$
\begin{equation*}
d N a e^{-E / k T} d \Omega \tag{3}
\end{equation*}
$$

Equations (2) and (3) represent the classical Maxwell-Boltzman equilibrium distribution.

One of the difficulties with the above analysis is that
 Thus in the example given concerning the distribution of 4 particles between 2 cells, there are not actually four distinct ways to put three particles in cell 1 and one in cell 2; the expression (1) for W is incorrect. Also, according to quantum mechanics, the position and momentum of a particle can be determined simultaneously only with uncertainty

and therefore the cell volume cant be infinitesimal but must be of the order $\hbar 3 / 8$ or greater to ensure knowledge of when a particle is in a particular cell. When these facts are taken into account, an analysis similar to the above yields for the equilibrium number of particles in a state of energy E_{i}

$$
\begin{equation*}
N_{i} \propto \frac{1}{B e^{E_{i} / K T}-1} \tag{4}
\end{equation*}
$$

Which is the Bosemeinstein distribution function.
In the case of particles having half integral values of spin (e.g. electrons, protons neutrons) there is also a restriction on the number of particles that can go into a particular state. In a given system, only one particle is allowed to occupy a state having a given set of quantum numbers. one determines the probability $f\left(E_{i}\right)$ that a state of energy E_{i} is occupied rather than the number of particles in the state. The equilibrium result is

$$
\begin{equation*}
I\left(E_{i}\right)=\frac{1}{B e^{E_{i} / K T}+1} \tag{5}
\end{equation*}
$$

Where the probability function $f\left(E_{;}\right)$is called the Fermi function. The quantity B is not temperature independent and may be written
\because

$$
B=e^{-E_{F} / K T}
$$

resulting in

$$
\begin{equation*}
P\left(E_{i}\right)=\frac{1}{e^{\left(E_{i}-E_{F}\right) / K T}}+1 \tag{6}
\end{equation*}
$$

Where E_{F} is called the Fermi energy of the system and is almost, but not quite, temperature independent. The Fermi energy E_{F} is defined as the energy of that state which has a 50% chance of being occupied by some particle, since when $E_{i}=E_{\text {Fs }} f=1 / 2$. States having lower energies ($E_{i}<E_{F}$) are more likely to be occupied $(f>1 / 2)$, and states of higher energy $\left(E_{i}>E_{F}\right)$ less likely to be occupied ($\mathrm{f}<\mathrm{I} / 2$).

A. $Z_{0}{ }^{2}$

$$
\begin{aligned}
& \therefore 7-\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { Swarmaty, } \\
& \Rightarrow \text { ay, } \rightarrow \text {, } \\
& Q_{B}+T^{2} x
\end{aligned}
$$

E De:ma

 Aragerge

$$
\begin{aligned}
& \frac{y^{2} 6}{2 x}+\frac{y^{2}}{x^{2}}+\frac{y^{2}}{y^{2}}+\frac{y^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { SAREABZ }
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{2 L}{b} d
\end{aligned}
$$

$$
\begin{aligned}
& d /\left.\right|_{d f} ^{f_{p}}
\end{aligned}
$$

$$
d A=\operatorname{tar}\left(\frac{2}{a^{3}}+\frac{1}{v^{2}}\right) f^{2} d y
$$

$$
\int_{0}^{r_{0}} x_{A}=3 A
$$

$$
\begin{aligned}
& \text { 车, } x \text {, } \\
& \operatorname{Fon}+\quad==\frac{x^{2}}{t^{2+A+}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hay } \\
& y=A N\left(\frac{a t}{a_{0}}\right)^{3} A_{T} \int_{0}^{n_{0}} \frac{z^{2} d x}{x}
\end{aligned}
$$

$$
\begin{aligned}
& C_{v}=\frac{\sum^{2}}{b^{2}}=\frac{12}{b^{4}} \pi^{4}\left(\frac{T^{2}}{b_{0}^{2}}\right) \\
& \text { Cu } \rightarrow 0_{0} T \text { T }
\end{aligned}
$$

6. ENERGY LEVEL DMCRAM GOR GOHE ATOM

$$
\begin{aligned}
& \text { Solnos } \\
& \text { S<-01001 } \\
& \text { SP8tW 000 }
\end{aligned}
$$

DENSITE OE STATES TWO DMEUSIONAL
$n^{\prime}=\sqrt{2 m} \frac{L}{N} \sqrt{E}$
$d n^{\prime}=\sqrt{\frac{L}{2}} \frac{1}{\sqrt{E}}$ VE dE

$$
\frac{L}{\sqrt{3}}
$$

$$
\left.\frac{I}{\sqrt{E}}\right) d E
$$

$$
\pi \bar{m})(3
$$ ENDISNEMO

 $\left(4 \pi n^{2}\right)$
i4 48

$$
\begin{aligned}
& =\frac{1}{\pi} 2\left(\frac{\sqrt{m}}{\hbar}\right)^{3} \sqrt{E} d E \\
& =D M E N S I O N S \\
& =\frac{1}{4}(2 \pi n) d n \\
& \left.=\frac{1}{4}(2 \pi)^{2 m} \frac{\sqrt{2}}{E} \sqrt{E}\right) \\
& =\frac{M \pi}{2 \pi}\left(\frac{L}{n}\right)^{2} d E \\
& \left.d n n^{2}\right)=\frac{L}{2 \pi}\left(\frac{L}{h}\right)^{2} d E
\end{aligned}
$$

[^0]
\[

$$
\begin{aligned}
& \text { U } 11
\end{aligned}
$$
\]

ONMARA:

$$
\begin{aligned}
& \text { GUEN } r_{0}=
\end{aligned}
$$

$C A$
$1 N$

AND CONOUCTIVITY O TWO OE MANLELS
Sdt SNOML HOOB
$1+$

O
$K I N G T H E$ CLRL OE 2 : (WNH VECTOR IQENTMU)
$\vec{\nabla} \times \vec{\nabla} \times E=\nabla \nabla \cdot E-\nabla^{2} E$
$\vec{\nabla} \cdot \vec{E}=0$

 $\operatorname{sWO}-\theta \Rightarrow H I$ $\Rightarrow \cap \square M$ 9
8
1
4
3
0

SNOLItN

$$
T H=
$$

$$
\begin{aligned}
& S N \\
& E S=A S
\end{aligned}
$$

$$
A \omega D
$$

$$
\text { QRMCEHLEEAN} \quad \text { ERMS }
$$

$$
\begin{aligned}
& E X T E A
\end{aligned}
$$

$$
\begin{aligned}
& A N O \\
& \begin{array}{l}
A N D= \\
-C=
\end{array}
\end{aligned}
$$

[^1]y eb B Ca
$$
8+8
$$
$$
8 \mathrm{~m}=
$$
\[

$$
\begin{aligned}
& 7: \\
& \text { ERom } \\
& \frac{\alpha}{-\alpha}
\end{aligned}
$$
\]

$$
\square
$$

$$
\because a=W य O=
$$

- Ico

$$
\begin{aligned}
& \text { 1. } h=\text { HoLES IN THF VALENCE BAND } \\
& =N_{v} e^{-(E E-E v) / K T} \text { FoR SMALK }
\end{aligned}
$$

$$
\begin{aligned}
& C=\operatorname{cqN} S T
\end{aligned}
$$

$$
\begin{aligned}
& h(E)=D E N S \text { DF STATES } \\
& f(E)=\text { EERAE DISTRIRUTION } \\
& h(E)=[1-f(E)] p(E) \\
& p(E)=\text { AHCLES AS A EUNCTION OE E. }
\end{aligned}
$$

why L CLCLCL

se, at $0^{\circ} k$, the Teuoned incelert ety.int lenol, liku:

3. Electiames onexye untzo
emergut to quand Nonghy,
an com Lic Cwher enowt e"'s ave.
z. Wfithinan apeytzen
3. Uneter kandecctian beod.
\qquad Cantuxut/a lacud
ace.odruel

Simileney a lele emm le at the danow espel at the folanon livel (matese of acsept.)

AnLlesterem in the cendeselèere bavel quaty sawobśce with a Lestl Níntel ballawel Lawat
 ploctan:

Felat í

$$
h_{V B}+e_{C B}=P_{h r}+\text { pHaNoN }
$$

 Cown and the seget x as erost ligh.
4. \qquad

$$
+\frac{\hbar^{2}}{m} \frac{s^{2} \psi}{5}-E \psi=0
$$

$$
\begin{aligned}
& \frac{s^{2} q}{s x_{2}=}+\frac{2 m E}{h^{2}} \psi=0 \\
& \frac{s z u}{s x_{2}}-k^{2} \psi=0 \quad K^{2}=\frac{\sum M E}{\hbar} \\
& \psi=A \text { ana } k x+B \text { Ata } k x \\
& 2 f(0)=0 \Rightarrow A=0 \\
& \begin{array}{l}
\psi=Q<k=k=\frac{\pi n}{a}
\end{array} \\
& \Rightarrow 2=B+\operatorname{lo}=x_{a} \\
& \leq=T \quad A \text { ROM } \quad \int_{0}^{2} \operatorname{sen}^{2} \frac{\pi n}{a} d x=1 \\
& \text { ANYWAT } \\
& K^{2}=\frac{T^{2} n^{2}}{a^{2}}=\frac{2 M E}{h} \\
& \Rightarrow E_{n}=\frac{\pi^{2} n^{2} \hbar^{2}}{2 m}
\end{aligned}
$$

5313
Solve 4 onty
Qgive as complete a devisition as posuible, natrax mceusany awtumptions, of the Widemanm -. Tramz ratis fon metals

$$
K=\frac{\pi^{2}}{3} \frac{k^{2}}{e^{2}}
$$

(2) Conider a etteice ob atoms with ast nemest neigh b at $a(1,1,1), a(1,-1,-1)$, $a(-1,-1,1), a(-1,1,-1)$. assuming as itensatimn - Wureen neawet neiehars only (forehetirs tighty lound), obtain an ixprestien for $\varepsilon(k)$. det $k_{0}=1$ fon neavip neesthas oftein an expretion for the uffertine mass
(3) For a solle with ofomit polarigabity α, and natorel the Clauniur-Hornate iquation tites $\frac{E-1}{E+z}=\frac{4 n h \alpha}{3}$. Danime -this.
(4) Describe haxt conduction An ous inpulstem.
(5) Derive a dispersions relation for a othe-dimension lattice of atoms, mass M, conmeites ty springs, spring constant b, and soperitéd by d.
(6) What would the effect of a light impunity be on the vibrational sisipla ob a. solid? assume a impurity, mass m, is in place of an atom of a monoatomic solid, moss with muM.
(2) What atoms would your expert to be donors and accupterd in Si?

1．ONE Navis with the Batisman Wrextuphart

 Eamething lítu

$$
\vec{v} \cdot D_{\mathrm{A}} \neq \vec{a} \cdot \overrightarrow{V_{v}} f=-\left(f-f_{0}\right) / \mathrm{q}
$$

where f io the PDF and to it
 LLúl epope tocts the Ferini－- insue didEriftestran for fo

$$
f_{0}=\left[1+e_{k}\left(\varepsilon-E_{k}\right) / k T\right]^{-1}
$$

uhier $E=\pi^{2} k^{2} / 2 m$ cunde $E=$ í
 faces J_{x} the auG a owt demaus

 it canter $C_{x}=-\int v_{x} \varepsilon d v_{x} d v_{y} d v_{y}$
Free eled ）$v_{x} E d V_{x}$
 nostion theden后 thed $k=\frac{\pi}{3}$ 立 $n T\left(\varepsilon_{F}\right)$ Taking the soitco gruek the W 上F nete

$$
\frac{k}{\sigma T}=\frac{\pi^{2}}{s} \frac{k^{2}}{e^{2}}
$$

4. The difleceim of howt ín diblis dencuited logt th.

$$
\nabla^{2} T=\frac{R E}{R} \frac{E T}{L T}
$$

where p is Eficdiproty, C pí the oflisfie keat, anelu is the the manal condeleet inotikg. An excomple (dirwícel in clace) ditariennct hext
 ofl a mathosial urth a Banowiank lequm $\left(I=I_{0} e^{-1 \sum_{0}}\right)$ toul a olst time unid watering lidear the terapis. changut I ruedestly and
(2) in the z disestato

(1) torethe juxlinu axtlafter goteng the fisine coundiver xforme ete, ethe fercelonarescuas sometti $T(r, t)=T_{p} \alpha e^{-\infty r 2 p r 2}$ There, $\alpha=\left(1+2 k t \text { ecroro }{ }^{2}\right)^{-1}$

That in, the pemperape Afsend ouituard (in iv) ath an unesidetersimiled hog the maleríl's antriajo

(2) $r=0, k T=r_{0} z_{0} \rho$.
(2) For te $=$ difistem, ofter goning char wash numis
otifle, we fonend thit

$$
T(0, t)=T_{0} \text { uf } z_{0} \sqrt{4 \pi_{k}} \text {, ind }
$$

whry Fo was an initil unsition paramete:

The aquán lexhopwíne íg Griverchex salc els enturnic hehshitolof

2tw

\qquad
\qquad
\qquad
ase caxides, to am appotimest taín,
menaction of el
dtome $n-1$ ann $n+1$ (iu Tumule tre
 (ie only witt the nearest micúllons) Tlit quved one two sumultameous diffle contivil
\qquad determinate, and sefteng ta
 and lexives one with

curve is intertesheser at the Brill owiso loumpliei.
7. A dxunot inn Si wavibl \&es an el socerat urith fieve
 atsele. Scouibay an
 Thavec Lestaonk én

$$
9-3-75 \text { (wea) }
$$

WANE E SAM SWAUT EWECTRONICS CTEXT

 CRUSTALLHE Somas
 SOLDS APEAS:
 MRETT, LaTCOES, $\subseteq T C$.
 ELECTEONE ONTICAL,

 ontios
 BAND STRUCTURE, LINEAR RNA NOWLNE AA

- Depects ARN IMDvertres: woverse

- SupERCNDRUTVITY: BCS THEERY OE, Jotiephson lumetian
- Surface proczeties:
- Thermar fporeqtues.
- Metmars of stway
 LASERS
mACHETICS
AWUREAB TO PA. 12 W WKYT

WAve \& QQQTrCA NTUQE OF MATTEQ

$$
\begin{aligned}
& \angle C=T: \quad E=h Y \\
& h=p C A N C R \text { S CONSTANTS} \\
& \vec{p}=h
\end{aligned}
$$

SCHOENHEESS EGIN

IU SELVE USE $A E R A T U S T G O L N E M A T I C S$.
4-MOMENYUM

$$
H E R=\quad i, \quad E=1 \quad E=M 1
$$

$$
\Rightarrow \quad E^{z} \cdots y^{2}=n p^{z}-p^{2}
$$

BACR TO DRODLEM:

WOL To CoAssMvE EDEAEY:

$$
\begin{aligned}
& P_{1}+R_{1}=P_{2}+R_{2} \quad p_{2}=p_{1}+k_{1}-K_{2} \\
& p_{2}^{z}=\left[p+p_{1}-k_{2}\right]^{2} \\
& =p_{1}^{2}+k_{1}^{2}+k_{2}^{2}+2 p_{1} k_{1}-210 \leq \\
& -2 k=k=
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}=\left[L_{2}, Q, \quad K_{2}=\left[c_{2}, \omega_{2} \omega_{2} \omega_{1} C_{L_{2}} \omega_{0}\right.\right. \\
& p=[n, 0,0,0] \\
& P_{2}=F_{2}, P_{2} A \dot{N} 1, O, D_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FOR } \& \angle T C O D, \quad\left[E, P, P_{p}, P=\right] \\
& {\left[E Q_{0} P_{=}\right] \cdot\left[E, p_{\infty}, p_{p}, D_{-}^{2}=E^{2} \cdot \vec{p}\right.} \\
& =E^{2}-p^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h^{2}}{2 m} \nabla^{2} \eta+V(\bar{m})+b=-y \\
& 9-5-75^{\circ} \quad(T 4 L R S I \\
& \text { CEMPTON EFEECT }
\end{aligned}
$$

$$
\begin{aligned}
& L=2 \pi K
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p_{1} \cdot k_{1}=p_{1} \cdot k_{2}+k_{1} \cdot k_{2} \\
& m \omega_{1}=m_{2} \omega_{2}+\omega_{1} \omega_{2}[1=\cos \varphi] \\
& \therefore \frac{1}{L_{2}}-\frac{1}{L_{1}}=\frac{1}{m}[1-c \infty \delta] \Leftrightarrow \text { Comeron Scntana }
\end{aligned}
$$

THE BOHR ATOM
hYRROGEN SPECTRA
$111 . \quad 1$ IUIM s characteristic frequencies
ATAS

$E_{n} \quad \square$

METHOC OE ATTACK
Eepentor
Furca Equation
Anewhar Momentum

$$
E=\frac{1}{z . E_{0}} v^{2}+\frac{z e^{2}}{4 \pi \in r}
$$

COULOMQ FORCE MUST EQUAC NECHAMEAL FORCE

$$
\begin{aligned}
& \frac{m v^{2}}{r}=\frac{z e^{2}}{4 \pi E r^{2}} \\
& L=A N C C L A B \text { MOMENTWM } \\
& =m \vec{r} \times \vec{V}=m \mathrm{FV}(=n+)
\end{aligned}
$$

FROM RLANCH'S WORE GOHR NNEW LLEFT OF

$$
\begin{aligned}
& \text { EREQ. } V \text { HAR ENEROT S LV } \\
& \text { AND, FROM OSCRETE ORRTSASSUMRTION: E E } E_{2}-E_{1}=\text { NV } \\
& \Rightarrow L=n \hbar
\end{aligned}
$$

so mpdetANT EQUATICNS

HOMEWORK: DVE MON $9-15-25$

$$
\text { TEXT PROQLEMS } 1.4,1.5,1.7,1.11,1.15
$$

(6)MAKE AN ENERGY LEVEL DIAGRAM FOR THE BOHR ATOM

Notes: $E=h r=R\left(\frac{1}{n^{2}}-\frac{h^{2}}{m}\right) \quad n, m>0, n, m \in$ TNTEER

$$
n<m
$$

TOMEAPION ENERQY $\rightarrow n=1, M=\infty$

$$
\text { THEN } \quad E_{M A K}=13.6 \text { EV }(Z)=10500 \text { cm (?) }
$$

WHERE CM H. \angle A UNTT OE ENEREY.
1 GLCRON = 10^{-6} M GURRAREO $\Rightarrow 74<1<50 a$

$$
\cdot \quad 10 \operatorname{coc} R=1 \mu
$$

Now, $E=h \gamma=h \frac{c}{\lambda}$

$$
\text { Ecceo }=\text { of } \mathrm{cm}^{-1}
$$

TY (DONCA EXUE ELECTHON)

$$
e E=m
$$

$$
\begin{aligned}
& E_{\text {emb }}=13.6 e v x b^{\frac{2}{2}} \times h^{4} \\
& <^{2} / 4 x+18
\end{aligned}
$$

$$
\begin{aligned}
& E=\frac{1}{2} m v^{2}+\frac{z e}{n}= \\
& \frac{m v^{2}}{r}=\square E E \\
& L=n \hbar \\
& E_{2}-E_{1}=h r \\
& \text { cconsen of e } \\
& \text { \& Emonecs } \\
& \text { EANGULAR MonENTUM Retames }
\end{aligned}
$$

$$
\begin{aligned}
& \text { souvis cop o GuEs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9-8-75 (MON) }
\end{aligned}
$$

SCHOEONGEAS EGMATION
Enerey EguATHOA

$$
\begin{aligned}
& (R E+p E:) f(x)=E f(x) \in E G E N \text { WeLuE GCRM } \\
& \left(P^{2}+v(r)\right) f(x)=E f(x)
\end{aligned}
$$

GLES SGMRCUGCERS EGNGAS

$$
-\hbar^{2} \nabla^{2} \psi+v(r) \psi=E \psi
$$

sMALEST salutian is FOL VCeyso

$$
\begin{aligned}
& \text { CONSIOER IN QNE DMENSION: } \\
& -\frac{t^{2}}{2 m} \frac{s^{2}}{2 x}=E+\psi \\
& =\frac{\frac{d^{2} L^{2}}{2^{2}}-\left(\frac{2 M E}{T^{2}}\right) \geq=0}{\frac{L^{2}}{x^{2}}+<^{2} y=0 \quad 2 K^{2}=\frac{-2 M E}{7}}
\end{aligned}
$$

Two SELUTIONS:

$$
y=A e^{4 k x}+B e^{-A k x}=A \cos k x+B^{\prime} c \Delta k x
$$

K copRESQONDS TO MOMENTUM $P=t K \% K$

$$
\begin{array}{r}
k=\sqrt{2 m E} \\
t \leq \sqrt{20}
\end{array}
$$

Proghenty gz The RARTCEE GENC AT
$\operatorname{Pan} \quad x=(4 P(x))^{2}$ ANA $\int_{-\infty}^{2}|2(x)|^{2} D x=1$

cotentual well tith INEINATE WMLLS

$$
-\frac{h^{2}}{2 n} \frac{s^{2} y}{2 x^{2}}+v y=e^{7}
$$

SO GOUNARY CONGITIONS ANE

$$
\begin{aligned}
& y(c)=\psi(\infty)=0 \\
& d y(a)=\frac{d y(a)}{d x}=0<\text { Nor HALH EoR a whLS }
\end{aligned}
$$

$$
\begin{aligned}
& \psi(c)=0 \quad B=0 \\
& \nRightarrow C a=0 \rightarrow A \Rightarrow k, b a=0 \Rightarrow k a=n \pi \Rightarrow k=\frac{n \pi}{a}
\end{aligned}
$$

CNOTE TAT E CAN ME HEQE SQLVED EOR
$9-10-25$ (wey)
EAEPLY LEVEL STRUETURE QE A SCLUQ

\qquad
\qquad

(Ex Ansacous To meh)

e

$$
\omega=\sqrt{k / \mu}
$$

$$
9-12-75 \quad(6 n=)
$$

Sch, Eq.

$$
\text { ECR } \quad-Y Q Q O G E N:
$$

MATHEWS ECOA TLDN? ELCEMRLL M ME A100ESUTY

Po
 \leq

$$
\begin{aligned}
& V\left(r-r_{0}\right) \approx v_{0}+r \frac{b u}{b} \left\lvert\,+r_{0}+\frac{r^{2}}{2} \frac{s^{2} v}{5 r^{2}}(r+4\right. \\
& V(x)=v_{0}+x \frac{s u}{2} x^{2}+
\end{aligned}
$$

$$
\operatorname{Con} T+3
$$

Ka is a constant chepecemento demtej

 Eives: $\mathrm{lo} \quad V(\mathrm{x})=\frac{1}{2} m L^{2} \alpha^{2}$
\Rightarrow APRPOXMATE WELE WUTt A AACAEOLL 5) Kis. x^{3},
scheóls SEq for riduholuc ascun

9-17-75 (WER) REAR CHAET z LOTO ZS
patse vo.actu $\Rightarrow{ }^{2}=k \lambda$ awsank, $k=\frac{2}{\lambda}$ GROUP vELCOITY

$$
\begin{aligned}
& f_{x}=E a^{2}=R_{x} \\
& \text { VELOCTY }=\frac{d w}{d K}
\end{aligned}
$$

 PAUL EXCLUSIOM PRINCIPLE

$$
R(E)=D E A \pi=\text { of sra }
$$

$$
\begin{aligned}
& p-b k \\
& E=t<d \\
& b=n a=d p=q E=d z \\
& b=\frac{b}{b^{2}}
\end{aligned}
$$

asegrsmon curves

$$
\begin{aligned}
& F=\frac{d E}{h^{2}}=f \frac{d t}{d t}=m \frac{d v_{t}}{d t}=m+\frac{d}{d E} \frac{d u}{d k} \\
& =m * \frac{d}{d k} \frac{d t}{d t}
\end{aligned}
$$

LN 3-d.

$$
m^{*}=\frac{\delta^{2}=}{\delta k_{0} k_{j}}
$$

THUS EFEECTVE NAES IS RELATED TO
INTRINSIC ERYSTAG DRORERTIES

$$
\begin{aligned}
& \text { HARMONIC } \quad \text { OSERLATYOR: SQLUTION } \\
& \frac{5 z}{s^{2}=y^{2} x=} \frac{s^{2} x}{x}+m \omega^{2} x^{2} y=E^{2} \neq \\
& \begin{array}{c}
\left.\frac{s=u}{s=2}+\left(E-t^{2}\right)^{2}\right) \psi=0 \\
\left.\psi=e^{2}\right)
\end{array} \\
& \text { ASSUME - -OLLTON } U=\sum a_{n} \sum^{n} \\
& \text { ENO UR WITH } E\left(\alpha O_{n}+B G_{n+z}\right) S_{n}=0 \\
& U(z)=a_{0} \leqslant^{m}(a) \leq n \\
& \text { SET GO Gr NONMALKEATLON } \\
& \text { SOLGTLON PS LETRYYE ROLTNOMIALS } \\
& \text { TuRNe out } E_{n}=\left(n+\frac{2}{2}\right)+\infty
\end{aligned}
$$

 $\frac{1}{4} \cos V=\frac{1}{2 d} x^{2}$

FQR $Y=\$ \gamma x^{2}+\operatorname{const} x^{3} \quad(\cdots-\cdots)$

9-19-75 (eng)
WAVE pROPAOATION LA PERIGRLC STRE.CTUEES by \angle. BRLLLOLIN GCVEQ GARERGAGK
BRILLOKIN Z ONE
PROQLEMS OE WHICR THE $Q Z I S A N A S P E G T$
(1) LAONQN (SOMND-LATHCT VQRATLONS)

STPUCTLUE $\quad O F A \quad S O L L L D$
(2)ELECTRONIC ENERREY STRNETURE

LAGRANGE (1759)
RETVER ELUCTMLALS

TRANSVERSE DISRLACEMENT

$=A \quad \cos (\omega t-k n d)$

$$
K=\sum \pi \quad A=\operatorname{cen} \pi-A C
$$

 TMEC SAME TH. NE

$$
k=\sum \pi \leq \frac{2 \pi}{4}+\frac{2 \pi}{4}
$$

GNO DE DERLLVOL EONE

$$
r=k\left(a=\frac{\lambda}{\lambda}\right)=\operatorname{consT} / \operatorname{La} \pi \bmod
$$

PANSUERSE DGOLACEMENT

$$
\therefore \mu A \quad<\leq \leq T R \in T \quad-\frac{1}{2 d} \leq a=\frac{1}{A} \leq \frac{\square}{又}
$$

$\leq \leq-\infty-\infty \leq a \leq a \leq \infty \quad(\leq \leq N A \leq T R N C)$

FOR UNEQUAL MASSES:

DUSEERSED CORUS

EOR THE DNE MASS CASE'

$$
\text { Hi Pass -if } \sum_{s}
$$

ETND PASS

WHATCNK DISRERSICN CLRUE (PGRUDKE)

$$
\begin{aligned}
& 9-22-75 \text { (MON) } \\
& \text { coulo have }
\end{aligned}
$$

THC TRANSVERGA AND THE LONG.MODES

 2 TXAN M M MANAL \angle TO LONGTLDNNA

LATTLEE SPACIME: ndtYa

$$
\begin{aligned}
& r_{n}=A e^{i(\omega t-n k d)} \quad=k=\frac{k+1}{1}
\end{aligned}
$$

$$
\begin{aligned}
& t=T M E, d=L A T T L E E \text { SPACNG} \\
& n=1 D T E G E R, A=E C N E T A N T \quad A M N E T N L E \\
& k=\frac{2 \pi}{\lambda}, a=1 / \lambda \\
& Y_{n+1}=e^{-i k d} Y_{n} \\
& k^{\prime}=k+2 \pi n / d \leqslant \text { MAY REOUEE TO LST ZONE. } \\
& \text { W, S RER1ODLCN Kd }
\end{aligned}
$$

$L E T-\frac{1}{2 d} \leq a<\frac{1}{2 d}$ aR $-\frac{T}{d} \leq \in \frac{\pi}{a}$
 To TEE RIEAT, $K<Q$ To TeC LEETT)

$$
f(\lambda)=E N E N \text { EUNCTIQNS }
$$

LFFRR EACH $<, \exists$ DECREES OF RRECO DOM, THEN THERE QRE L BRANCOES. 1-A LATLIEE, 2 ATOMS PER CELL:

PRORLEM:

$$
\begin{aligned}
& i_{2 n}-i_{2 n+1}=d_{2} Q_{2 n} \\
& i_{2 n+1}-i_{2 n+2}=\frac{d}{C} Q 2 n+1 \\
& \begin{array}{l}
L_{1} \frac{L_{2 n+1}}{d_{2} z_{2 n}}=\frac{Q_{2 n}}{C_{1}}=\frac{Q_{2 n}+1}{Q_{2}}=\frac{Q_{2} Q_{2 n}}{L_{1}}
\end{array}
\end{aligned}
$$

bet the stcomnd onRER EQUATIONS:

USE $\operatorname{cin}_{2}=A_{a} e^{i(c u t-2 n k, x)}$

RUEENG BACK IN GNE 3

$$
\begin{aligned}
& \left(-L_{1} \omega^{2}+\frac{1}{C_{1}}+\frac{1}{c_{2}}\right) A_{1}-\left(\frac{e^{i k x}}{C_{1}}+\frac{e^{-i k x}}{c_{2}}\right) A_{2}=0 \\
& \left(L_{2} \omega^{2}+\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) A^{2} \cdot\left(\frac{e^{i k x}}{C_{2}}+\frac{e^{-i k x}}{O_{1}}\right) A_{1}=0
\end{aligned}
$$

FOR A SOLUTION TO EXISF dethl=0

$$
\begin{aligned}
& {\left[-L, \omega^{2}+\frac{1}{E_{1}}+\frac{1}{e_{2}}\right]\left[-L_{2} \omega^{2}+\frac{1}{\varepsilon_{1}}+\sum_{2}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \omega^{4}-\omega^{2}\left(\frac{1}{L_{1}}+\frac{1}{L_{2}}\right)\left(\frac{1}{C_{1}}+\frac{I}{L_{0}}\right)+\frac{4 \text { Atw } k_{x}}{L_{1} L_{2} C_{1} G_{2}}=0 \\
& \Rightarrow \omega=\frac{1}{2}\left(\frac{1}{b_{1}}+\frac{1}{L_{2}}\right)\left(\frac{1}{c_{1}}+\frac{1}{c_{2}}\right) \\
& \pm \sqrt{\frac{1}{4}\left(\frac{1}{L_{1}}+\frac{1}{b_{2}}\right)^{2}\left(c_{1}+\frac{1}{c_{2}}\right)=\frac{4 \sin c_{0}}{b_{i} b_{2} c_{1} C_{2}}} \\
& \text { TATEENATION }
\end{aligned}
$$

$$
L_{1}=m L_{0}
$$

$$
\begin{aligned}
& U_{\text {Tatht }}=\sum_{n, m} U\left(x_{n+m}-x_{1} \leqslant_{\text {nom, wate un Expansion }}\right. \\
& U\left(1 x_{n-m}-x_{1}\right)^{\sim} U(m d)+\left(Y_{n m m}-Y_{a}\right) U^{\prime}(m a \\
& +\frac{1}{2}\left(x_{n+m}-U_{n}\right)^{2} b^{\prime \prime}(m A)
\end{aligned}
$$

$$
9-24-15 \quad(w E O)
$$

aEvem.

$$
\begin{aligned}
& +\frac{1}{2}\left(Y_{0}+n_{n}-Y_{n}\right)=U^{\prime \prime}\left(n_{d}\right) t_{\ldots} .
\end{aligned}
$$

$$
\begin{aligned}
& \left.+C Y_{p}=Y p-N\right) \text { U' } \quad \text { nd } \\
& \left.+\frac{1}{2}\left(Y_{p}-Y_{p}\right)^{2} U^{\prime \prime}(n d)\right] \\
& =-\sum_{?}\left[-U^{\prime}(m d)-\left(Y_{0}+\left(Y_{p}-Y_{n, n}\right) \quad U^{\prime}(m) \quad U^{\prime}(m d)\right.\right. \\
& =\sum_{n=} U \prime(m d)\left[Y_{p+n}+Y_{p-n}-2 Y_{p}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { ASSUME SOLCTRON EORMS }
\end{aligned}
$$

TAKE A LOQKNE日 OF THE DET.OE COEG M: CHATE.
pecunte $\operatorname{det}(\quad)=0$

$$
\begin{aligned}
& \text { ecunse } \operatorname{det} C \quad=0 \\
& \left.\Rightarrow u^{4}-2 u^{\prime \prime}\left(M_{1}+\frac{1}{M_{0}}\right)^{2}+\frac{4 u^{2}}{M_{2} M_{2}} \operatorname{tun}^{2} \operatorname{lgd}\right)=0
\end{aligned}
$$

GUES:

$$
\omega^{2}=v_{1}^{\prime \prime}\left[\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) \pm \sqrt{\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right)^{2}-\frac{4 d_{1} M_{2}}{M_{2}}}\right.
$$

previen: AMAL=Z ToE CASE $M_{1}=M_{2}$.

Nowi $\quad \omega^{2}=\frac{v_{1}}{M_{1}}\left[M_{2}+M_{2} \pm \sqrt{\left.M_{1}^{2}+M_{2}^{2}+2 M_{1} M_{2}+\infty+d\right]}\right.$ ACSUME THAT $M_{1}>M_{2}$ FOR LONK WAVELENETHS

TO MNGCDE NGEGMELZA ECNE, NLST EMpRaY $\quad M A G L A A R Y A R E L A C A T S$
$z k d=\alpha+k, \quad T G E N$
 $\frac{\alpha}{2}=\pi$
$\omega^{2}<0 \Rightarrow Q_{0} \omega$

$$
\begin{aligned}
& \Rightarrow Q_{a} \text { dre } \quad=0 \\
& \operatorname{Lan}_{2}=\operatorname{cog}_{2}^{2}=0 \\
& \square \leq \leq \leq \leq \frac{1+3}{a}
\end{aligned}
$$

CATE 2 ' EVNNGSEL NCt

U

$$
\begin{aligned}
& E L E C T R O N C \\
& B A N D \\
& \operatorname{STROCTDHE}
\end{aligned}
$$

- $-\quad \operatorname{tatcs} 14$

bue ned

Bobxok $=0 L E x=2 A$ N $\cos ^{-1} ?$ $\left(E O R \&\right.$ PHONON). $4 \max ^{2}+1 \leq$ k Ear A somev HCLt watue Eole 3ev?

$$
\begin{aligned}
& a-26-25(\operatorname{cex}) \\
& i \hbar+\psi=H z=E \quad y
\end{aligned}
$$

AOO 4 PERTURQATON $\Rightarrow \quad 2 T E \leq \leq C E+X D$

LLCE WUTQ PERTLREEO WALE EQN.

$$
\begin{aligned}
& =[H+V] \sum_{n} a_{n} f_{n}(x) e^{-h E_{n} t / t}
\end{aligned}
$$

$$
\begin{aligned}
& i+\frac{b a x}{b t} e^{2} t^{t}+E=a e^{-2 e_{0}}
\end{aligned}
$$

of

$$
\begin{aligned}
& V_{n^{\prime}}=1 q^{4} v q_{n} d x
\end{aligned}
$$

Regklt $f_{n}^{+} p_{n} b_{n} b_{s n}$

$$
\mathrm{Caver}_{8}=\frac{1}{6}
$$

USUALLY MEASURE VSN
CONSIDER THE SPEENL CASE CONSLDER THE SBEELAL CASE WNATRE-

$$
E=-E_{n} \leq \frac{5 a_{s}}{t}=\frac{1}{4} \sum_{n} a_{n} V_{s h}
$$

(ste VOL B of KENMMAM LEGTVRE).

A SEUME

$$
\begin{aligned}
& a=e^{-w^{3}} \\
& \Rightarrow \hbar \omega a_{=}=\sum_{n} a_{s N} \\
& \qquad a_{s}=a_{n} V_{s n}
\end{aligned}
$$

$$
\begin{aligned}
& E_{0}=v_{s} \\
& E_{1}=E_{0} a_{s}+v_{s}+1, a_{s}+1+v_{s} s+a_{s-1} \\
&+v_{s} s+a_{2}+V_{s}, a_{s-2}+
\end{aligned}
$$

ASEUME ELECTRON WULL JUMP
ONLY TO AN ADJACENT ATOM=
TH15 6VVES

$$
E a_{s} 2 b_{0} a_{s}-V_{s, s+}, a_{s+1}-V_{s s}-1
$$

$$
\begin{aligned}
& \left(E-E_{d}\right) a_{s}=-v\left(a_{s}+a_{s+1}\right) \\
& \text { LET } \\
& a_{\text {sth }}=e^{\alpha \operatorname{knd}} \Rightarrow a_{5-n}=e^{-i k n d} \\
& \text { GuEs } \\
& E^{-} E_{0}=-v_{1}\left[e^{e k d}+e^{-k k d}\right] \\
& =-2 v_{1} \text { codaled } \\
& \Rightarrow E=E_{0}-2 V \cos k d
\end{aligned}
$$

GRAREIT'S DISPERSION CRRUE

$\cos k d=1-k^{2} d z / 2$

$$
\Rightarrow E=E_{0}-2 V+V_{1} d Z_{R}=<\operatorname{PARAROLA}
$$

RECALC ERON ELECTRON IN EREE
sPACE: $E=\frac{2 k}{2}$ M $=\frac{\hbar}{z+T}=\rightarrow E F=E C$ TUE $M A S$

$$
\left(E-E_{0}\right)=-v_{1} 2 e_{0} k d+v_{2} 2 d+\quad 2 /<d
$$

ERCM USINo $U_{S, S-2} Q_{s-2}+V_{S, S+2} Q_{S+2}$ THIROWA AWAY prEviOUSH?
$q-2 q-75$ (moN)

$$
i t \frac{\delta a_{s}}{b t}=E_{0} a_{s}+\sum_{n=1} V_{s+n} a_{s+n}
$$

$$
A \leq \leq \sim M E D \quad a=e^{k / \infty X_{n}}
$$

ares $E=E,-21, \operatorname{cocata}$

consiper 2-0 sewo

$$
4-V_{1} \text { terms }
$$

$G V E S E=E_{0}-2 V_{1} \cos k d+2 V_{2} \cos k \sqrt{2} d$

SEE: ML. GOHEN WNO K. BERY STRESER

$$
p_{4} k p \in+14173(1966)
$$

MULER MDVCES (TO SRECMEY RUEETIONS)

$$
\left(\frac{1}{2}, 0,0\right)
$$

a gome bactuanens

$$
\begin{aligned}
& \text { REARESEATATLNS, AC. PRESS }
\end{aligned}
$$

MOMENTOA CONSERVATION: $\overrightarrow{k_{n}}+\overrightarrow{k_{n}} \rightarrow 0+k_{h}$ cheronen

$$
\text { whacet cap (c, } c^{(6)}
$$

mrest set (GaAS

$$
\begin{aligned}
& 10-1-25 \text { (WED) } \\
& \text { on HomemokR } \\
& \text { frest pracuEM }
\end{aligned}
$$

EFFECTUE MASS

$$
\begin{aligned}
& V_{\hat{6}}=\frac{d w}{d k}, \quad k=\frac{2 \pi}{d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CE= } \omega \Rightarrow v_{8}=\frac{t}{\hbar} \frac{S}{L} \Rightarrow V_{0}=\frac{1}{\hbar} \text { 京 }
\end{aligned}
$$

$$
\begin{aligned}
& \rho=\hbar k
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow m=\pi=\frac{b^{2}}{v_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& E=\frac{1}{2} M v^{2} \\
& =\frac{1}{2}+k^{2} k^{2}
\end{aligned}
$$

PARABOLIC BAND \leftrightarrows QUASI FAEE ELECTRON

PROQLEM: EXTEAD M ' OERIVATION TO 3-d. (Ĺ, EEVEGTVEGMASS)

How to measure n^{*}

$$
A B=O Q B T 1 O N
$$

$$
=x \operatorname{ron}-\mathrm{c}+\mathrm{h}
$$

EXITONS HN AN TNDUEECT GAP MATEALAL

π / a

$\frac{\text { Lovip }}{14 \text { ELU }}$
Q cerb

AMME TER RECOROLR

$$
\begin{aligned}
& 10 k \simeq I m e V
\end{aligned}
$$

EXTUL WAVE EUNCTION: 4
140

$$
y(x)=\sum_{x} a_{x} e^{\alpha / e_{x}}
$$

Coses

$$
\begin{aligned}
& \left.\int \psi_{x}^{*} V(r) \psi_{x}=\int e^{-i t^{x}} C\right) e^{i k x} \\
& \left.\int e^{i\left(k_{i}-\sqrt{f}\right.}\right)^{-x} d x=\delta\left(k,-k_{f}\right)
\end{aligned}
$$

USE FOURIER ANALYSLS LIBERLT. MAKUK MEASUREMENTS (ABSORRTION) CAN ELUE GNNDUNE ENEPEY.
CWLO CONSIDERUNG SETTEMS QHAMHM

$$
s+A T E=7
$$

$$
e(E)=\text { NUMBER OF QNANTUM } \leq T A T E S
$$

Pea.
1). ASSUME THERNZ EQUALIKRLUM
2.) ELECTRON QRDRERTY GPAUN EKCLUSION PRINCIAE NOT MORE THUN DNE ELECTRON CAN HAVE A GLVEN SLST OF QUANTUM $\%$

$$
\begin{aligned}
& \text { FERMI- DRAC DSTRLROTION } \\
& n=E L E G T R O N S \text { IN CONDUCTION Q } 4 N D \\
& P=\text { HOLES UN VALENCE RANO } \\
& n=P_{E O} e(E) \equiv P_{E O}=\text { EERM-DRAS RETRGETOA } \\
& =P[E L E G T R O N \text { hAS EuERGY } \angle
\end{aligned}
$$

$$
\begin{aligned}
& 10-6-75 \text { (MON) } \\
& \text { FERM-DNAC DSTVNOLICON }
\end{aligned}
$$

$$
\begin{aligned}
& =f(E) p[E=E+\Delta] \text {. } \\
& f(E) p[E \rightarrow E+\Delta][1-f(E+\infty)] \\
& \text { FRENRAULIECLUSIOU } \\
& \text { Vconsioer peverse }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow f(E+\Delta) \\
& \left.\Rightarrow f(\xi) p\left[E_{0} \rightarrow E+\Delta \square\right][1-1+E+\Delta)\right] \\
& =f(E+\Delta) P E E+\Delta \rightarrow E][1-f(E)] \\
& \frac{P[E \rightarrow E+\Delta]}{P[E+\Delta \rightarrow E]}=\frac{f(E+\Delta)[1-f(E)]}{f(E][1-f(E+\Delta)]} \\
& =e^{-\Delta E / K T}
\end{aligned}
$$

SOLVE FOR $f(E)$

WHAT $15 \quad f(E)=$ FERM-OHRC DIST. EUNC.

$$
f(\xi)=\frac{1}{e \frac{E-E_{f}}{k T}-1}
$$

(1) WHAT IS D (E)?
(3) WHAT is n ?

$$
\begin{aligned}
& D(E)=\text { ELECTRQNS NTHE ENERGX E } \\
& =P\left[e^{-} \text {can HAVE ENE E do } 2 \leftarrow\right. \text { RUSESET } \\
& =f(E) d z \\
& n=\int_{E_{G A N D}} n(E)
\end{aligned}
$$

QENSITR QF DONOR STATEA = NO $=$
DENSTTY OE GONOR lONS

$$
N_{0}^{t}=N_{0}\left[1-f\left(E_{0}\right)\right]
$$

W CONOUCTION EANO, e^{-}ACTI EREE,
DENBITT of STATES FOM A
FREE PARTVCLE.

=DNE DLMENSEN GOCES CRCOESE IN A COX

Lomest E LONGESt

$$
\begin{aligned}
& E_{n}=n^{2}\left(\frac{t^{2}+t^{x}}{2 n}\right) \\
& n=\sqrt{2 m E L^{2}} \Rightarrow d n=\frac{1}{2}\left(\frac{2 n^{2} L^{2}}{h^{2}}\right) \frac{d E}{\sqrt{E}} \\
& \text { N Id WE EET } \\
& \frac{1}{8}\left(4 \pi n^{2} d n\right)=d \pi n^{3}
\end{aligned}
$$

HOMEWORR: SOLVE FOR bENSITY IN TWO DMENSIONS. (FREE RARTRCLE IN A $(X L G O X)$)
now

$$
n(E) d E=\frac{\pi}{2}\left(\frac{2 m}{\hbar^{2} \pi^{2}}\right)^{3 / 2} \sqrt{E} \frac{1}{e \frac{E^{t}}{4}+1} d E
$$

$$
\begin{aligned}
& 10-8=25 \text { (WEO) } \\
& n(E) d E=\operatorname{cons} I_{0} \quad \frac{\sqrt{E} d E^{1}}{1+e E_{-\infty} T} \\
& \text { EWQ teabétom eano } \\
& n=\int_{E_{c}} n(E) d E \\
& =\operatorname{cons} \int_{E}^{\infty} \frac{\sqrt{E-E}}{1+e} \\
& \text { Eく-E~~, 2 tu LeV }
\end{aligned}
$$

$$
\begin{aligned}
& =N_{e} e^{-\left(E_{c}-E_{q}\right) / K T}
\end{aligned}
$$

" ECEECTVU DEAS Wr of buetes
$P=$ HOLES IN THE VALENCE BAND

$$
\begin{aligned}
& =z\left(\frac{2 \pi m k T}{h^{2}}\right) e_{V}^{-\left(E_{F}-E_{V}\right) / K T} \\
& =N_{V}-(k T
\end{aligned}
$$

MASS ACTION LAW

$$
\begin{aligned}
n p & =N_{c} N_{V} e^{\left(-E_{F}+E_{V}-E_{e}+E_{F}\right) / K T} \\
& =N_{c} N_{V} e-E_{Q K T} \\
E_{\xi}=E_{K} & =E_{Q} G A P=E_{c}-E_{V}
\end{aligned}
$$

sumMatION

$$
\begin{aligned}
& n(E)=(1-f(E)) p(\xi) \text { EOR HOLEs } \\
& n(E)-f(E) Q(G) \text { FOR ELECt }
\end{aligned}
$$

HOMEWORK: FIND SOME STUFF
voL CAN CALCULATE WITH REAL NUMBERS
"Relate ResuLts to Real

NUMBER. WHAT KIND OE
IHNGS CAN YOU CALCULATE?

$$
\begin{aligned}
& \text { 10-10-75 (ERI) } \\
& \text { IMpuRLT ALSRIRUTION FUNCTION } \\
& \text { CDANORS- ACGERTORS EON HEMENGQRK) }
\end{aligned}
$$

$f_{j} \triangleq P[$ ELECTRON LS LTATE \dot{d} CoF THE DONOR SEMTCCNDUCTOR COMPEX)] ASSUME 1 ELECTRON (E-) ON DONOR.

$$
\begin{aligned}
f & =P \text { CNO ÉLECTRON IS ALREAOY } \\
& B Q U N D ~ T O ~ T H E ~ D O N O R] ~
\end{aligned}
$$

BOUND TO THE DONORI

$$
\times P C M N E L E O T R O N H A S
$$

ENERES E E

$$
\begin{gathered}
\text { ME DEFINE } \\
\text { THS GSOTV } \\
\text { WE DDUT } \\
\{=x a I T E Q \text { STATES }
\end{gathered}
$$

$$
E_{f}
$$

$$
\begin{aligned}
& f_{d}=\left[1+\sum_{i \neq d} f_{i}\right]\left\{\frac{1}{\left.1+e^{\left(E_{p}+E_{d}-E_{b}\right) / k T}\right\}}\right. \\
& D E=\text { INE }\left(E_{0}+E_{j}-E_{-}\right) / K T=
\end{aligned}
$$

FOR AN ACCEATOR:

$$
\left(E_{F}-E_{A}-E_{C}\right) / K T=h_{a}
$$

$$
\begin{aligned}
& f_{j}=\left[1+f_{j}-\sum_{i} f_{i}\right]\left(\frac{1}{1+e^{d}}\right) \\
& f_{j}\left[1-\frac{1}{1+e t}\right]=\left[1-\sum_{i} f_{i}\right]\left(\frac{1}{1+e d}\right) \\
& =f_{j}\left(\frac{e e^{\alpha}}{1+e}\right)=F+\left(\frac{1}{1+e}\right) \\
& \text { WHERE } F^{+}=\text {ELONAR ATOM HAS } \\
& \text { NO ELECTRON (In ISIONTEEO)] } \\
& f_{i}=F^{+} e^{-\infty} \\
& F^{+}+F^{0}=1 \text { REQUiREMENT } \\
& \text { WHERE Er = P[DGNAR HAS AA ELEcTRON] } \\
& =\sum_{i} f_{i} \\
& F_{0}=F+\sum_{\infty} e^{-b} \\
& =\left(1-F^{+}\right) \\
& \text {Gus } E+\left(1+E e^{-\theta}\right)=1 \\
& F+=\frac{1}{1+\sum_{\alpha} e^{-D}}=\frac{N_{0}}{N_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { FROM DONORS } \\
& N_{D}=\text { CONCENTRATION OF DoNOR } \\
& \text { ATOMS. }
\end{aligned}
$$

TO WKLLDE DEJENERACI
LET $\delta_{\dot{\sigma}}=O F$ STATES WTTH ENERGTE E

$$
\begin{aligned}
\text { FOR ONE STATE } 1 & F^{\circ}=\frac{1}{8} e^{\left(E_{0}-E F / K T\right.}
\end{aligned}
$$

$$
F+=\frac{1}{1+\varepsilon^{-} e^{\left(E-\varepsilon_{0}\right) / K T}}
$$

ON TOR OF AAGE WH APPACX:FT= 1+E, EZ E_{C}

$$
\begin{aligned}
& E^{+}=1+\varepsilon_{G R D} e^{-d \operatorname{din}+\varepsilon_{1} e^{-t}+m} \\
& f_{A_{A}}=E_{0}-E_{-} \\
& A_{1}=E_{0}-E_{1}+E_{1}
\end{aligned}
$$

WELECT THE HCGUER CRRER TERMS WHLIEL ARE SMALL. PRCDGEM: DERIVE EOR ACLERTORS

$$
\begin{aligned}
& F t=\frac{1}{1+\sum_{E N E R G} \delta_{j} e^{-\alpha}} \\
& F+\sim\left[1+\delta_{\bar{\delta} \cdot} e^{-2)}\right]=1 \\
& \text { - HeNs } \\
& F^{0}=1-E^{+}
\end{aligned}
$$

EFEECTS OF DOAINE ON EERMT ENERES

$$
\begin{aligned}
& n=H \text { OF ELECTRONS IN CONDUCTIONL DANR } \\
& =N_{c} e^{-\left(E_{c}-E_{F}\right) / k T} \\
& \text { NEUTAALITY DLETATES } \\
& N_{D}-N_{0}^{0}=\text { H DONORS IONIZEQ } \\
& n=\left(N_{0}-N_{0}^{0}\right)+p \quad n \gg p \\
& P=A C E E P T O R \text { CONEENTPATION } \\
& \Rightarrow \quad n=N_{0}-N_{0}^{0} \\
& N_{c} e^{-\left(\frac{\left.E_{E}-E_{D}\right)}{K T}\right.}=N_{D}\left[1-1+\frac{1}{\frac{1}{\theta}} e^{\left(E_{0}-E_{F}\right) / K T}\right] \\
& =N_{0} \frac{1}{1+e^{\left(E E_{A}-E_{0}\right) / K T}}
\end{aligned}
$$

NORMALY SOLUE EOR Eg considere SOME CASES
1.HIGH TEMP

$$
\begin{aligned}
\Rightarrow \frac{N_{0} \varepsilon^{-}}{N_{e}-E} E_{0} / K T
\end{aligned}<1
$$

2. LOW TEMP.

$$
\begin{aligned}
& \frac{N_{C} E}{N_{c} e^{-C E c}-E O I K T} \gg 1 \\
& E_{f} \cong \frac{E_{c}-E_{0}}{2}+\frac{k T}{2} \ln _{n} \frac{N_{c}}{N_{0}} \\
& \text { GENERAL EXPREESION FOR FERMI ENER. }
\end{aligned}
$$

END OF MATERLAL COVERED ON TEST 1.

$$
10-13-75 \quad(\operatorname{moN})
$$

SEMiNAR $<$ ESB TOAN
ON RESENANCE RAMAN GEEEET.
RAMAN EEEECT
INERAREO ARSORETION/RAMAN EEEECT

cONSTOER 1 tel

$$
\begin{gathered}
\text { Q } \\
\text { PIGATR }(r)
\end{gathered}
$$

$$
\begin{aligned}
& U_{0}=\operatorname{NOHAL} M \text { Mans }=\text { ? } \\
& =C_{0} \cot \left(\operatorname{cog}_{\mathrm{a}}+\mathrm{t}_{i}\right)
\end{aligned}
$$

$\vec{P}=$ NDVEEO PCLARDTTON, $\vec{E}=A P R L E D E F E D$

$$
\begin{aligned}
& p=\left[\alpha_{x}+\sum_{x+j} V_{j} \cot \left(\operatorname{cog}_{\mathrm{a}}+Q_{j}\right)\right] \\
& x \text { Eocowt }
\end{aligned}
$$

ctas

$$
\begin{aligned}
& p=\alpha_{x_{0}} E_{0} \omega_{0} \alpha_{1}+E_{0} \sum_{d} \alpha_{y_{j}} V_{0} \\
& \text { A Cotz }\{(\cot \hat{b}) \tan \} \\
& \left.4 \operatorname{cog}^{2}\left\{\left(\alpha-\operatorname{Le}_{\infty}\right) T^{3} \beta_{d}\right\}\right]
\end{aligned}
$$

I =INTENSITY ~ $\omega^{4} \rightarrow$ WHY THE SKY CS GLUE ?

$$
\hbar \omega_{7 N}-\hbar \omega_{j}=\hbar \omega_{o u t}
$$

WHEN DOES RAMEN SCATTERING OCCUR?

$$
\text { le } \alpha \times y_{j}=0
$$

$$
\begin{aligned}
& P\left(\omega-\omega_{j}\right)=d E(\omega) E\left(\omega_{j}\right) \\
& \text { Romsis } \\
& -p=d^{\prime}(-E(\omega))(-E(\omega)) \\
& \text { IF THE CRYSTAL (OAS)OHAS } \\
& \text { INVERSION SYMMETRY, THEN } \\
& d=d, \quad \text { THEN } d=O \quad A N D \\
& P\left(\omega-\omega_{j}\right)=-P\left(\omega-\omega_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { FIRsT ORDER: } P_{\text {GUI }} \sim \cos \omega t \text { IF } \alpha_{\text {Yo }} \neq 0 \\
& \text { sEcond onosR; } R\left(\omega \omega_{j}\right)=\cos \left[\left(\omega_{j} \omega_{j}\right) t\right] \\
& 1=\alpha_{x y \%} \neq 0
\end{aligned}
$$

$A R P L C A T I Q N T O \quad C D$
hUtCH NORMAL MODES OF COZ ARE RAMANAETVE

1) CHANGE RHASE BY 150 ${ }^{\circ}$

AND REFLEGT THRODGH ON a N
2) EAR RAMAN SCATTERING MOLECULE MUST RE DNEERENT FOR $d F O$ (RAMAN ACTIVE)
$V_{1}: \leqslant 0$ o $\quad \rightarrow$

FOR MORE GOMRLICATEA ATOMS AUST USE GROUP THEORY
$10-15-75$ (weo)
TEST. TEST ON WEQNESDAY, 10-22-75
MATERAL UR TO LAST EALILAY
CLOSEE BOOK

HEAT CAPACITY:

$$
\begin{aligned}
& \text { HEAT CAPACITY: } \\
& \text { DEF: HEAT CAPACITR }=C_{V}=\left.\frac{S E}{S T}\right|_{V}
\end{aligned}
$$

IN A CAS

$$
E=3 N k T \Rightarrow C_{V}=3 N K
$$

PMONON GMA ELECTRON CONTRLVOTION $W L L B E C O O R E D A T$.
$W_{H A T}=\left\langle n_{p}(E)\right\rangle=A v E$ 世 OP OCSMLATORE WIH ENERGY E
$E=F O R$ \& $A A R M O N K$ OSCILLATOR $=\left(n+\frac{1}{2}\right)$ NU

USE EOLTZMAN EACTOR:

$$
\frac{N_{n+1}}{N_{n}}=e^{-\left(E_{n+}-E_{n}\right) / k T}
$$

FOR HAR OSC: $\quad \frac{N_{n+1}}{N_{n}}=\infty^{-\hbar_{\omega} / K_{T}}$

FRACTIDN OF EILLED STATEE
AT ENERGY En $=N_{n} / \sum_{E} N_{S}$

$$
=\frac{e^{-\varepsilon_{n} / k T}}{\sum_{s} e^{-E} / k T}
$$

AUERAGE NUMBER OF QUANTA, $\operatorname{AN} A T T A T E \quad n=\langle n\rangle$

$$
<n>=\frac{\sum_{n}^{\infty} n e^{-n n w / k T}}{\sum_{n=0} e^{-n \hbar(\omega / k T}}
$$

LET hW/KT = x

$$
\Rightarrow|n\rangle=\frac{\sum_{n=1}^{\infty} n e^{-n x}}{\sum^{-n x}}
$$

NeTE: $n e^{-n x}=-\frac{d}{d x} e^{-n x}$

$$
\begin{aligned}
& \sum_{i=1}^{\infty} n e^{-n x}=l n \sum_{n=0}^{\infty} e^{-n x} \\
& \begin{array}{l}
\text { LET } Y=E^{X} \Rightarrow \sum_{n=0}^{\infty} Y^{n}=S
\end{array} \\
& 15-s=1 \\
& \Rightarrow S=\frac{1}{1-T} \\
& =\frac{1-e^{x}}{} \\
& =\frac{1}{1-e^{-\hbar \omega / k T}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{e^{E / K T}-1} \\
& \text { EOR EOSONS }
\end{aligned}
$$

RECALL FEIRMI-DIRAC DISTRIQUTION:

$$
\frac{1}{Q E-E T+1} \Leftarrow \underset{\substack{\text { FQRUEERMMIONS } \\ \text { EXGUUSION ARINEIARE }}}{ }
$$

FOQ $\operatorname{SMALL} \hbar \omega$

$$
\begin{gathered}
\langle n\rangle \approx\left(1+\frac{1}{\hbar T}\right)-1=\frac{k T}{\hbar \omega} \\
T-E N \\
\langle E\rangle=\langle n\rangle \hbar \omega=K T \leqslant \text { GLASSNCAL QESNLT }
\end{gathered}
$$

GENERALLY

$$
\zeta E(\omega)\rangle=\frac{N \hbar \omega}{e^{\frac{\hbar}{T}-1}}
$$

$$
\begin{aligned}
& \text { THEN } \\
& C_{V}=\frac{S}{S}\left[\left.E\right|_{V}=N K\left(\frac{t \omega}{K T}\right)^{2} \frac{e^{\text {that } R T}}{\left(e^{\operatorname{hin} T}-1\right)^{2}}\right.
\end{aligned}
$$

IN BD, WE GOT THREE DECREES OE FREEDOM \rightarrow MULTMLY GR RY 3
$\left[\begin{array}{l}\text { HOME WORK W WHAT IS CV ER } \\ \text { LARGE TEMPERATURE P }\end{array}\right]$

$$
\begin{aligned}
E_{\text {toto }} & =\sum_{n} \hbar^{h} \omega\langle\omega\rangle\left(\frac{d n}{d E}\right) d E
\end{aligned}
$$

DEBYE USED DENSITY OF STATES

$$
\begin{aligned}
& \frac{d L^{2}}{d L^{2}}=\frac{\left(V_{0, c h e}\right)^{2}}{2 \pi^{2} \hbar V^{3}} ; v=v e c o c i t /
\end{aligned}
$$

$$
\begin{aligned}
& 3 N=V Q 0 \text { \& } 2+2+V 3 \\
& \rightarrow \omega_{\infty}=\frac{6 T \geq V \geq N}{V O L}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10-17.25 (FRI) } \\
& c_{v}=\frac{B}{T}=\langle E\rangle H_{X}=N K\left(\frac{\hbar \omega}{K T}\right)^{2}\left(e^{\tan L}-1\right)^{2} \\
& E=\int_{0} \hbar_{\omega} d C(\omega) \quad \eta(\omega) d \omega
\end{aligned}
$$

 arves $d(\omega) d w=\frac{L}{7} \frac{d /}{d} d w$

$$
\text { D) } \quad \frac{4 n}{2} d n
$$

GLuES

$\frac{d w}{1 K}=$ Wut E PAClEET GROUR VEWOCTOX EXAMRLE: ACCLSTIC AHENEN
 ONE CAN I/a SHOW (EXTREWCREZTT)

$$
D(\omega)=\frac{2 b}{\pi a}\left(\frac{1}{\operatorname{con} 4 x}-\omega^{2}\right)^{1 / 2}
$$

MOREL BREAKS DOWN Q WMAX

GOP:N GALUM RHESE WDOE

BACR TO CV.

$$
\begin{aligned}
& \text { DEQYE ASELNEOTHAT: TU=VK? } \\
& \text { (Le ACOUSTIC PNONONE). } \\
& \text { GVES: KOR }=6 T^{*} V^{* N} / \text { Vewne } \\
& \text { - DEAKE ADPRONMATION }
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}=e_{0} / T \\
& \theta_{0}=\text { DERYE TEMPEPERATURE } \\
& \text { THEN }=q N K\left(\frac{T}{Q_{P}}\right)^{3} \int_{0}^{x_{0}} \frac{x^{4} e^{x} d x}{\left(e^{x}-1\right)^{2}} \\
& \text { FOR SMALL } \\
& E_{1}=\operatorname{constx} \int_{0}^{\infty} \frac{x^{\frac{3}{d}}}{e^{x}-1}
\end{aligned}
$$

NTEERATINE TENMWUSE

ELESTRON CONTRLUTIQN TO SPECLFIC UEPT

$$
E \sim+L T N \quad \Rightarrow c_{k} \pi=k
$$

$$
\text { TUEEMAD } E L E Q D-K T
$$

$$
\begin{aligned}
& E=c a d s-\pi \cdot b \sum^{a} \frac{1}{n^{4}} \\
& =\operatorname{cons} \pi \times \frac{6 \pi^{4}}{15}
\end{aligned}
$$

$$
\begin{aligned}
& \text { SLCR } A E S E \angle
\end{aligned}
$$

$$
\begin{aligned}
& R E C A C L: \square=-\sum_{n=1}^{\infty} e^{n} \\
& \Rightarrow E=c \infty N s t \int_{0}^{\infty} d x x^{3} \sum_{n=1}^{\infty} e^{-n x}
\end{aligned}
$$

$$
10-20=75 \text { (MON) }
$$

CV ATSUNING FEVAR-DIRAC:

THIS cues $C_{V}=\frac{d(t)}{T}=T^{2} N K T T_{F}=$ OFF AN ORDER OF ABQUT 5.
TEST QUESTIONS
e" SHARNO

ExCLEEQ E IN conRUCTIONRAND

$$
\therefore \hbar \frac{s}{t} a_{0}=E a_{0}+v_{1} a_{1}+v_{e} a_{2}
$$

$$
+v_{1} a_{-1}+v_{2} a_{-2}
$$

V_{1} I $_{\text {, }}$ IS FORM OF COUPLING.
cIVES $E=E_{0} \pm V_{1}$ wod $H_{1} x^{2} \quad 2 V_{2} \cos K_{2}+$

V. AMD V2 ARE MEASUREABLE FOR QUASI-FREE $e^{-=} E^{-} \rightarrow H^{2} K=2$ TETRAHEARANC 4 TRAANGLES

$$
\begin{aligned}
& \Delta=\int_{0}^{\infty} E P_{F b}(E) d \eta d E d E^{-}
\end{aligned}
$$

SIMRLE HAPMONIC OSCILLATOR

$$
\begin{aligned}
& V(x)=\text { 友 } m \omega^{2} x^{2} \quad, \quad \omega=\sqrt{4 / m} \\
& \text { sctab's EaN1S } \\
& -\frac{1}{z=z} \nabla^{2} \psi+m=m c^{2} x^{2} y=E \psi
\end{aligned}
$$

$$
\begin{aligned}
& \text { BRUTE FORES SQLUTVON. } \\
& \text { LET } \sqrt{m \sigma^{W}} x=5 \\
& \varepsilon_{d z}=2 \varepsilon / \operatorname{ta} \\
& \text { cues } \frac{a^{2} z}{5}+(E-5 z) y=0
\end{aligned}
$$

THIS is HERMTEIS OIFEEMENTLAL EQM.

$$
y=\nu(\xi) e^{-\xi^{2} / 2}
$$

cives

$$
\begin{array}{r}
\Rightarrow \sum_{r=a}^{\infty}\left[(r+2)(r+1) a_{p+2}=\sum_{p}(p+2)\left(p+1 a_{p+2}\right\}\right. \\
\therefore(r+2)(r+1) a_{r+2}=\left[2 r-[\varepsilon-1) a_{r}\right]
\end{array}
$$

$$
a_{r+2}=(r+2)(r+1) a r
$$

\Rightarrow THO MNEDENDENT SQLUTIONS COTTA KNOW a_{0} ANO a_{1}.
FIMA BY NORMALIFATHON.
TO KEER THNSS (H) EROM
BLQWIMG UR, WE MUST
RESTRLCT: $E=2 n+1$

$$
\begin{aligned}
& \frac{2 k}{\hbar} \omega=\varepsilon=2 n+1 \\
& \Rightarrow E=\hbar \omega\left(n+\frac{1}{2}\right)
\end{aligned}
$$

10-24-75 (ERZ)
TEST: STANOARO DEVITION ~ 10

$$
A V E=67 \text { to } 12
$$

FERME ENERGY: $E_{p} \equiv \frac{E G}{2}+C T R X C()$
NOTES: HARMONIC OSCLLLATOR

$$
\begin{array}{ll}
V(x)=\frac{1}{2} m c^{2} x^{2} \\
Z=V(\xi) e^{2} \\
E_{n} & =f \operatorname{sev}\left(n+\frac{1}{2}\right)
\end{array} \quad\left\{=\sqrt{m L_{2}} x\right.
$$

SOLUTION WAS HERMITE NCLYNOMIALS

$$
H=V(\xi)=\sum a_{n} \leqslant n
$$

$$
a_{S+2}=\frac{2 s+1-s_{N}}{(s+1)(s+2)} \quad G_{N}=\text { NGMEREG }
$$

$$
\begin{aligned}
& H_{0}(\xi)=1 \\
& \left.H_{1}(\xi)=2\right\} \\
& \left.H_{2}(\xi)=4\right\} z-2 \\
& \left.H_{3}(S)=8\right\} 3-12\{
\end{aligned}
$$

$A R E$ ORTHOCCNAL: $\int_{-\infty}^{\infty} H n(s) H_{m}(\xi) d \leqslant=0$

$$
H_{n}(\xi)=(-1)^{n} e \xi^{2} \frac{-\infty}{d n}\left(e^{-\xi g}\right) \text { EOR m’fn }
$$

CENERATUNO FUNCTIOSUS
RECURREION:

$$
\frac{d H_{n}(\xi)}{d \xi}=2 n H_{n-1}(\xi)
$$

\wedge

$$
\psi_{n}=H_{n} e^{-53 / 2}
$$

NORMALIZATION CONDITION=

$$
\begin{aligned}
\lim _{-\infty} H_{n}^{2}(s) e^{-\xi^{2} d s} & =\sqrt{\pi} 2^{n} n \\
& =2 n \lim _{-\infty}^{\infty} H_{n+}^{2}(s) e^{-\xi^{2}} d
\end{aligned}
$$

PROBLEM: SHOW THE ABOVE COVE WEDNESDAY) OSCILLATOR WAVE FUNCTIONS:

AOL RECURRANCE RELA TIEN:

$$
\begin{aligned}
& 7 s \psi_{n}=\sqrt{2(n+1)} \psi_{n+1}+\sqrt{2 n} \psi_{n+1} \\
& f_{n+1}\left\{\psi_{n}=\sqrt{2(n+1)}\right. \\
& \psi_{n+1}\left\{\psi_{n}=\sqrt{2 n}\right.
\end{aligned}
$$

FERMI'S EOLDEN RULE
(RATE OF TPANSITLON)

$$
\text { CROSS-StCTION } \theta
$$

$$
\left.\begin{array}{l}
\text { CROSS-StCTICN } C \\
R E A L E: ~
\end{array} C x, t\right)=\sum_{n} a_{n} q_{n} e^{-i m_{n} t}
$$

solution of $H \neq E \psi$
PERTLRE: V

$$
A \operatorname{scum}=a ; a=a(t)
$$

$$
\begin{aligned}
& A \sin \left(t, \quad a=a(t) \quad \sum a_{n} f V_{n}(t) e^{-\frac{1}{h}\left(\varepsilon_{s} t_{n} t\right.} d t\right.
\end{aligned}
$$

ANYWAY, WE GET THEE
FRLLOWINO RATE OE CHANCE

$$
r(t)=\frac{2}{\hbar}\left|V_{s n}\right| b_{D}\left(t_{n}\right)
$$

$$
\begin{aligned}
& \text { MATGUK ELEMENT } \\
& \langle\psi=| \text { RERT } \mid \text { Ho }\rangle \\
& \left.\mathcal{H}_{i}=\phi_{i} \operatorname{ctram}\right) \Delta i(=1=10) \\
& \text { QPoLE: } \nabla=e \bar{x} \\
& \left\langle\psi_{i} \mid e \vec{k} / \psi_{i}\right\rangle
\end{aligned}
$$

10-27-75 (MON)
FERM'S GQLREN RULE

$$
\psi=E \sin a_{n}(t) \phi_{n}(x) e^{-4 /} E_{n} t
$$

 Assume $a=a(t)$
SOLUE THU PERT RRARLEM: $(H+V) \mathbb{Z}=\mathrm{E}$ GLVES EXACTLY:

$$
\begin{aligned}
& \text { EXACTLY: } \\
& \frac{\delta G}{s}=\frac{-k}{n} \sum_{n} a_{s n} e^{\frac{q}{t}\left(e_{s}=E_{A}\right) t} \\
& V_{s n}=f_{s}^{*} V \phi_{n} d \vec{x}
\end{aligned}
$$

ASSUME $\triangle a_{S}(t) \quad A A E S M A L L$

$$
\pi+E n \quad a_{n}(t) \approx a_{n}(a)=a_{n}
$$

ASSUMUE SKSTEA IS INITLALLY IN STATED:

$$
\begin{aligned}
& a_{n}(0)=1 \simeq a_{n}(t) \\
& a_{s}(t)=-\frac{1}{h} \int_{0}^{t} V_{s n} e^{H}\left(E_{s}-E_{0}\right) t d t
\end{aligned}
$$

ASSUMNE V IS NOT A EUNCTION OE TIME í $V_{S N} \not V_{S M}(t)$

$$
\begin{aligned}
& \text { THEN } \\
& a_{s}(t)=-V_{s n} \frac{e^{\frac{I}{4}}\left(E_{s}-E_{n} t-1\right.}{E_{s}-E_{n}}
\end{aligned}
$$

P[bEine n state s] $=P_{s}=\left|a_{s}(t)\right|^{2}$

$$
\begin{aligned}
& =4\left|V_{s n}\right|^{2} \frac{\operatorname{Ain}^{2}\left[\frac{t}{z \hbar}\left(E_{s}-E_{0}\right)\right]}{\left(E_{s}-E_{n}\right)^{2}} \\
& P(t)=\sum_{s} P_{s}(t)
\end{aligned}
$$

$$
\begin{aligned}
& P\left(E_{S}-E_{A}\right) d\left(E_{S}-E_{A}\right)
\end{aligned}
$$

SO, OVER REGION OE LUNTEAESET

$$
\begin{aligned}
& \left.P(t)=4 /\left.V_{s}\right|^{2} p\left(E_{n}\right) \int_{-\infty}^{\infty} \frac{\left.E_{s}-E_{n}\right]^{2}}{\infty} E_{5} E_{2}\right]
\end{aligned}
$$

$$
\times d\left(\varepsilon_{s}-\varepsilon_{n}\right)
$$

[HOMEWORK: SOLVE INTEGRAL]
ANSWER IS

$$
p(t)=p\left(E_{n}\right) \frac{2 \pi}{\hbar}\left|V_{s n}\right|^{2} t
$$

AND RATE OF TRANSITION

$$
\begin{aligned}
\left.\frac{d P(t)}{d E}=\frac{2 \pi}{\pi} \right\rvert\, V_{S A} T^{2} P\left(E_{n}\right) \quad & \text { FERMIS } \\
& \text { GOLDEN } \\
& \text { RULE } \# 2
\end{aligned}
$$

ERON CONS. OE ENEREY: $|B /=| \frac{P 1}{\mid}$

CdN wTEEEATED OUT QEMQU.

$$
\frac{d \Omega V}{V_{2}} \frac{5 c^{2}}{d a}
$$

$$
d \Omega=C R C S S \quad \leq E E T+O N
$$

$$
d \sigma=Q_{0} \operatorname{aq} \sigma \quad \omega+0 \quad d \quad 2
$$

$\operatorname{CATE} Q E \quad T Q A N S T O N=\frac{Z \pi}{F}\left(\frac{1}{V_{Q}} V\left(Q_{t}\right)\right)^{2}$

$$
x \frac{t p^{2} d Q}{8 / 7}
$$

$$
\text { GUES } \frac{d O}{d \sqrt{2}}=\left.\frac{1}{4 \pi^{2} L^{4}} \frac{p^{2}}{V^{2}} V_{0}\right|^{2} \leftrightarrow
$$

$$
\begin{aligned}
& V_{s n}=\frac{\square}{V} \int V(x) e^{\frac{\alpha}{h}\left(\frac{1}{p}-\dot{p}\right) \cdot x} d B \\
& =\frac{1}{V}+[V(x)][E O Q E R T R A N S T C A H \\
& \text { DENSITY OU STATES: } \\
& \frac{v p=d p d \Omega}{(2 \pi t)^{3} L^{2}}
\end{aligned}
$$

EGR A COLLOMQ RUTENTIAL:
WHICH IN TUNA GVESS

$$
g_{n}=\frac{z^{2} z^{2}}{4}\left(m e^{2}\right)^{2} \frac{1}{\operatorname{sen}^{2}+2 / 2} \leqslant
$$

SAME AS RUTHLEREORDS SOLUTION.
HEAT DIEELGION EQUATION:

$$
\begin{aligned}
\nabla^{2} T & =\frac{L E}{T K} \frac{S T}{S T} \\
R & =T N E R N A L C O N N L C T N U T Y \\
D & =\text { DENSTTY } \\
C & =H E A T \text { CADRCITY }
\end{aligned}
$$

$$
\begin{aligned}
& V(r)=z z e^{z} / r \text { "(onuscian unire) } \\
& V_{p-p e}=z \geq \int f e^{\frac{z^{k}}{\hbar}}\left(\vec{p}-\overrightarrow{p^{c}}\right) \cdot \frac{\vec{x}}{x} d \vec{B} \\
& \text { THIS IS seluEA. IN LAGKSon (FIELAKTEXY) } \\
& \text { GIVES } \\
& V_{p p}=\pi h^{2} z e^{2} /\left(4 p^{2} \sin ^{2} z^{2}\right)
\end{aligned}
$$

$$
10-29-75 \text { (wEa) }
$$

$$
\text { READ CHARL } 3+
$$

$A S S U M E \quad Q E A N \angle S E A S S I A N=$

$$
I=I_{0} e^{-\frac{r^{2}}{2 r_{0}^{2}}}
$$

(1) RADLALHEAT
$\triangle A B S C D E T L O N \square$

$$
\begin{aligned}
& \text { ENEQCY (GEAT) } \\
& \text { ALSDREED } \\
& A T E \omega N-A C E T E E N \\
& T R A N S M T T E D
\end{aligned}
$$

$$
\begin{aligned}
& \nabla \pi T=\frac{D C}{P} E \\
& p=\text { OENSTTY } \\
& C=S R E C R E L E E A T \\
& K=T H E M M A L \text { CONOLCTMWTY }
\end{aligned}
$$

POA CASE I: (RARLAL)
USE CTMMORICAL COORDMATES

$$
\begin{aligned}
& \frac{S T}{S E}=0, \quad \frac{S T}{S \theta}=0 \\
& \frac{\rho C}{R} \frac{\delta T}{\delta t}=\frac{1}{r} \frac{\delta}{\delta T} \frac{r \delta T}{\delta r} \\
& \text { RSE SEDERATION OE VA RIARLES: } \\
& T(r, t)=T_{r}(r) T_{t}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ques }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\frac{T_{r}^{s}}{T_{\mu}}}=A(u) J_{0}(r u) \\
& T_{t} \approx e^{-u^{*} k t / e c} \\
& \therefore T=\operatorname{Tr} T_{t}=A(\omega) J_{0}(r \omega) e^{-c^{2} k T / e c}
\end{aligned}
$$

APRLY RCWMRN COWDITIONS:

$$
\begin{aligned}
& T(r, t=0)=T_{0} e^{-r=/ 2 r^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& T(r t)=\int_{\infty}^{\infty}(u) \Theta^{-b^{2} k T / V_{0}} U_{0}(\text { UN }) d V
\end{aligned}
$$

$$
\begin{aligned}
T(r, t)= & \int_{0}^{\infty} u d u\left\{\int_{0}^{\infty} x d x U_{0}(u x) e^{\frac{x^{2}}{x-a}} d\right\} \\
& x e^{-u^{2} k t / o c} J_{0}(u r) d r
\end{aligned}
$$

$$
\begin{aligned}
& T(r, t)=r_{0}^{2} \int_{0}^{\infty} u d u \quad J_{0}(u r) e^{-\left(\frac{1 L T}{\rho_{2}}+\frac{r_{0}}{z}\right)_{0}^{2}} \\
& =T_{0}\left(\frac{1}{1+\frac{2 \alpha^{7}}{\rho_{\theta}}}\right)^{x} e^{-\frac{\alpha r^{2}}{\rho_{0}^{2}}<} \\
& \underbrace{T 0}_{t} \underbrace{T}_{t} \\
& \alpha=\left(1+\frac{2 t+t^{2}}{\Delta t_{2}}\right) \\
& \left.\frac{F G E}{T(r)} 0\right)=\frac{5}{2} \\
& r=0 \text { cives } \\
& \frac{k T}{r_{0}^{2}}=1
\end{aligned}
$$

HOMEWORK: SURROSE $r_{0}=10 \mu, 100 \mu$, ISOLVE FOR A SEMICONDVCTOR AT $T=4^{\circ} K 300^{\circ} K$
es solle tor watEk @ 300 <
Si $\quad C_{A} t_{40}=1.69 \times 10^{-6}$ botas

$$
c_{p} \|_{100^{\circ} k}=0.259
$$

Ge

$$
\begin{aligned}
& c_{\mathrm{f}}^{\mathrm{hlog}} \mathrm{~F}=0.191
\end{aligned}
$$

(2) $C A \leq C$

$$
\frac{S T}{\delta S}=0, \quad \frac{G T}{S r} \simeq 0
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { GIVES } \\
T(z, t)=f(u) \cot (u z) e^{\frac{-u^{2} k T}{e c}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& T(0, t)=T_{0}, \alpha \cdot\left(z_{0}-z\right) \\
& \text { (enwece cotrotives) } \\
& \left.T(a, c)=\int_{0}^{\infty}(u) \cos u z d u \quad \text { (Eannen Xenn }\right) \\
& \left.\Rightarrow A(u)=\int \quad \text { Toz }\right) \operatorname{coc}^{2}(u z) d z \\
& T(z, t)=L^{\infty} A(U) \cos (O z) e^{-u z t} d U \\
& =\frac{T_{0}}{2} \sqrt{\frac{P C}{T}} \int_{0}^{1 z_{0}} x_{0}\left\{e^{-(x+z)(L K t}\right) \\
& \left.+e^{-(x-z) 30 c / 4 / t y}\right\} \\
& T(z, 0)=\frac{2 T}{\sqrt{n}} \int_{0}^{z \sqrt{\frac{E c}{4 k T}} e^{-0} d c=\text { Toar }\left(z \cdot \sqrt{\frac{\rho C}{4} T}\right)} \\
& t_{\frac{1}{2}}=z_{0}^{2} e c / k
\end{aligned}
$$

$10-31075$ (ERI) 2 STATE QUANTHM SYSTEM

PLN STATE $b=b$

$$
E Q, O E \text { MOTLQL SONTANNED IN }
$$

$$
H=H A N L C T O N I A N
$$

$$
\begin{aligned}
& \text { GQOMTON DEERTCREATON } \\
& H=H_{\uparrow}+\quad V \\
& \text { SQLUTON EXEEREGEREATON GNGOTV-LEDD } \\
& \text { GNE } A S S D M E S T H A T \text {. } \\
& \text { Hasmet } A=a p_{a} e^{-k c_{a} z^{2}+b_{b} e^{-i \alpha b t}} \\
& \phi_{q}=\leq \quad \left\lvert\, \begin{array}{l}
a \\
\phi_{b}=\infty
\end{array}\right. \\
& p_{a} p_{0}=\sum_{\text {CeA }} a \mid b \sum_{k=r}=\sum_{k a b} \\
& \notin=a \text { a> } e^{-a \omega_{0} z}+b l b>E a \leqslant b t \\
& \text { ASSUME } a\} \text { S } A R E \text { ELNGTGONS OE TLNE } \\
& a=a(t) \quad b=b(t) \\
& \text { WANNA FNNP FO EOR HatV } \\
& \left.E_{0}=\leqslant 0 \quad 4010\right\rangle \\
& \text { WANNA KNDE } \leq a\left|H_{0}+V\right| Y>
\end{aligned}
$$

USING $<a|b\rangle=0$

$$
\left\langle a^{\prime} \mid a\right\rangle=1
$$

GLUE S

$$
\begin{aligned}
& \langle a| t_{0}+v|\psi\rangle=\langle a| H_{0}|a\rangle a e^{-z w_{0} t} \\
& +\langle a| v|b\rangle e-b b^{2} \mid \\
& \langle a| t_{a}|b\rangle=\langle a| E_{b}|b\rangle=0
\end{aligned}
$$

SiNCE $H Z=\frac{-1}{4} \sum_{5}^{2}=$

$$
\begin{aligned}
& \langle a| H_{0}|a\rangle a e^{-i \omega_{a} t} \\
& +\langle a \mid b\rangle b e^{-a c u t} \\
& =i \hbar\left[a e^{-i \omega_{a} t}-i \omega_{\operatorname{ma}} a e^{-i \omega_{a} t}\right]
\end{aligned}
$$

DEFINE: $\quad V_{a b}=\langle a \mid V / b\rangle$
ASSUME $V_{a a}=V_{b b}=0=V_{a b}=V_{b a}$

$$
\begin{aligned}
& \omega_{t}=\omega_{b}-\omega_{0} \\
& V_{a b} b^{o} e^{-i w_{b} t}=i \hbar G^{-} e^{-i b u t} \\
& \operatorname{Vab} a e^{-a a_{0} t}=a \hbar b e^{-a w b t}
\end{aligned}
$$

EqUNRLEMTHUK

$$
\left.\begin{array}{l}
a=\frac{-\hat{i}}{\hbar} V_{a b} b e^{-\hat{a} \omega_{0} t} \\
b=\frac{-i}{T} V_{b} a e^{i \omega_{0} t}
\end{array}\right\} \text { WANNA soLVE}
$$

ASSUME DAMPNG: $\quad b^{2}=-\frac{d}{3} b$

$$
\zeta 2=\omega-\omega 0
$$

$$
\begin{aligned}
& b^{\prime}=-\frac{1}{2} \frac{t_{a} 9}{2} e^{-k} \sqrt{2} t-t_{2} b
\end{aligned}
$$

$$
\begin{aligned}
& V=e E_{0} x_{D} \angle O Q L E L E A D A L E A \text { FIELD } \\
& e\langle a| x|b\rangle \\
& \text { enes } \\
& \dot{a}=\frac{-\dot{a}}{\hbar} \frac{\mu_{a} b}{2} E_{0} b\left[e^{t\left(\omega-\omega_{0}\right) t}\right. \\
& \text { t } e^{-i}\left(\cos +v_{0}\right) t
\end{aligned}
$$

$$
\begin{aligned}
& \left.+e^{-i\left(\omega-\omega_{\infty}\right) t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& a=\alpha e^{-\frac{k}{k}\left(t-t_{0}\right)} \\
& b=\beta e^{-\gamma b z\left(t-t_{0}\right)}
\end{aligned}
$$

THUTLAL CONDYFIONS

$$
\begin{aligned}
& \text { 1. } \alpha=1, \beta=0 \text { Q }=t \\
& 2, \beta=1, \quad \alpha=0 \quad\left(a t z a t_{0}\right.
\end{aligned}
$$

TO FIRST ORDER INE EIELD

$$
\begin{aligned}
& \begin{aligned}
& \text { GluEs } \\
& \beta(t)=L_{t_{0}}^{t}\{\beta\} d t
\end{aligned} \\
& =-\frac{1}{z h} E_{0} e^{-i \Omega t_{0}} \\
& \times \frac{e^{\left[-a-\frac{1 a}{2}+\frac{t}{2}\right]\left(t-t_{0}\right)}-1}{-x-\Omega-\frac{d x}{2}+\frac{d b}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =t<\left[a^{+} b e^{-k a b t}+a b^{*} a^{k a_{0} t}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(e^{x} \Omega-\alpha_{0}-e^{-\gamma \cdot d t}\right)
\end{aligned}
$$

$$
\text { ASSUSE } \begin{aligned}
P_{A}(t) & =\text { CONSTAMT } \\
& =A A T E G Q W A C L \text { ATONS AEE } \\
& E X C I T E O
\end{aligned}
$$

ANYWAT, THE ANSWER $\angle S$

$$
p_{x}=\frac{t^{2} E_{a}}{2 \hbar}\left(\frac{R_{b} n_{b}}{\delta_{b}}-\frac{p_{a} n_{a}}{q_{a}}\right)
$$

$$
\frac{1}{\left(a-\omega_{0}\right)^{2}+\sigma_{A b}}=\left[\left(\omega_{0}-\omega_{0}\right) a_{0} d \square-\sigma_{b} \cos ^{2} \omega\right]
$$

$$
\begin{gathered}
11-3-75(\mathrm{man}) \\
E \quad F i E=0
\end{gathered}
$$

Na
R_{a}
$n_{b} \leq 5 \leq \infty \operatorname{ron}$

Ya
$R_{b} \leq<L N G L S$
$\partial_{a} \leq a=C \infty Y$
YA QETH:

$\langle i| v|b\rangle$
$\operatorname{paos} i \rightarrow b \quad \sim K i|\cup| b\rangle\left.\right|^{2}$

$$
\begin{aligned}
& \text { fFOR A calbisian }
\end{aligned}
$$

$$
\begin{aligned}
& =\sin [V(x)]
\end{aligned}
$$

ANYWAY ASSUAINE WDEREMOENCE

$$
\begin{aligned}
& P_{T}=P R O Q . \text { OF TRANSITION }=\sum_{n} P_{\text {A }} \\
& \left.=\leq\left|\langle | v_{0}\right| b\right\rangle\left.\right|^{2} \\
& D E C A Y \quad \frac{S D_{B}}{d t}=P_{7} n_{b} \\
& \Rightarrow n_{b}=n_{b} e^{-\sigma_{b}} \Rightarrow \sigma_{b}=p_{T} \\
& \left.\therefore \gamma_{b}=\sum_{i}|\langle i| V| b\right\rangle\left.\right|^{2}
\end{aligned}
$$

BOLTEMAN TRANSPORTEQN.

$$
\begin{aligned}
& f(\vec{r}, \vec{x}, t) \Rightarrow \frac{\delta t}{\delta t} \cdot \vec{a}+\frac{\delta \Delta}{\delta x} \vec{v}+\frac{\delta t}{\delta t}=0 \\
& \frac{d t}{d t}=\frac{\delta f}{\delta n} \frac{\delta v}{\delta t}+\frac{\delta t}{\delta x} \cdot \frac{\delta x}{\delta t}+\frac{\delta t}{\delta t}
\end{aligned}
$$

$=0$ IN ANEEUALIBRIUM

$$
\begin{aligned}
& \frac{d y}{d x}=a=5 / m^{t} \\
& \frac{d x}{d}=v \\
& \frac{d}{\frac{f}{t}}=e^{-t / 7} \\
& =f / r
\end{aligned}
$$

$$
\text { NqM: } \frac{f_{0} f}{f}=\frac{p}{m} \cdot \nabla_{x} f+\frac{E}{\hbar} \cdot \nabla_{k} f
$$

11-7-75 (ERI)
TEST \& 2 NEXT WEDNESDAY
Maremial in TEXT: CMART 4

$$
\frac{\frac{f}{b}-f}{x}=\vec{v} \cdot \nabla_{x} f+\vec{a} \cdot \nabla_{v} f
$$

ARPROXIMATION: $\frac{S z f}{s x S V} \simeq \frac{S 2 f o}{E x S V}$
METAL

$$
f_{0}=n\left(\frac{m}{2 \pi k T}\right)^{3 / 2} e^{-\frac{m v^{2}}{2 k T} \Leftarrow \text { MAXWELC }}
$$

WHL CALCULATE
(1)ELECTRON CURRENT DENSITY

EHERT CURRENT OENSITY WORK INVOLVES SOLUTION OF

$$
\begin{aligned}
& I_{n} \equiv \int_{0}^{\infty} E^{n} e^{-E / K T} d v_{x} ; E=\frac{\operatorname{tav}}{}{ }^{2} \\
& a_{n}^{n}=\int_{\infty}^{\infty} e^{-a x^{2}} x^{n} d x \\
& \text { (0) } D_{0}=1-e^{-4 x+1} d x \\
& \left(D_{0}\right)^{2}=1 e^{-a t^{2}} d x \int e^{-a P^{2}} d \\
& x=r \cos \infty \quad y=r \operatorname{Lin} \theta \\
& \begin{aligned}
\left(D_{0}\right)^{2} & =\int_{0}^{\infty} \pi d r d e d e e^{-a r 2} \\
& =\pi d r
\end{aligned} \\
& \begin{array}{l}
=0 \pi / a \\
=\sqrt{\pi / a}
\end{array} \\
& \text { (1) } \\
& \begin{aligned}
& A_{1}^{2}=C_{a}^{a} d e^{-a x^{2} d x} \\
&=\frac{\sqrt{\pi a}}{2 a}
\end{aligned} \\
& D_{0}^{\prime}=\frac{1}{2} \sqrt{\pi} \\
& a^{\prime}=\frac{1}{2 a} \\
& D_{n}^{\prime}=-\frac{5}{5 a}\left[\int_{0}^{\infty} e^{-a x^{2}} x^{n-2} d x\right] \\
& =-\frac{S a}{S a} D_{n-2}
\end{aligned}
$$

$$
\begin{aligned}
& D_{2}^{\prime}=-\frac{3}{8 a} A_{0}^{\prime}=\sqrt{4} e^{-3 / z} \\
& \text { ETC. } \\
& A_{0}^{\prime}=\frac{1}{2} \sqrt{M^{\prime}} \\
& D_{1}^{\prime}=\frac{1 a}{4}=\frac{1 \pi}{2 a} a^{-3 / 2} \\
& D_{3}^{\prime}=\frac{1,}{2}-\frac{(n+1)}{2}
\end{aligned}
$$

REWRMTING BOLTEMAN EQN: (1-O)

$$
f=f_{0}-\psi\left(v_{x} \frac{\delta f_{0}}{\delta x}+a_{x} \frac{S f_{0}}{\delta v_{x}}\right)
$$

DEFINE CURRENT DENSTTK:

$$
\begin{aligned}
& U_{x}=-\infty \sum_{=} v_{x} \\
&=-e \int_{-\infty}^{\infty} v_{x} d v_{x} \\
&=e \int_{-\infty}^{\infty} \int_{-\infty} P_{x} \frac{s v_{x}}{\delta x}+a_{x} \frac{\delta f_{0} f_{x}(u)}{} \\
& \times v_{x} d v_{x} d v_{x} d v_{z}
\end{aligned}
$$

THERMAL CURAENT OENSITY:

$$
c_{x}=\int_{-\infty}^{1} f v_{x} \varepsilon d \frac{3}{v}
$$

Now $\frac{S t_{a}^{-\infty}}{s x}=\left(\frac{m \nu^{2}}{2 K T}-\frac{s}{2}\right) \frac{f_{0}}{T} \frac{\delta T}{S x}$

$$
\begin{aligned}
& \frac{\delta f_{0}}{V_{x}} \frac{\delta v_{x}}{S t} \Rightarrow \frac{S v_{x}}{t t}=\frac{E E}{m^{2}} \\
& \Rightarrow \frac{\delta f_{e}}{\delta v_{x}} \frac{\delta v_{x}}{\delta t}=\frac{e E_{x}}{K T} V_{x} f_{0} \\
& \text { GIVES }=\frac{n e q k}{m} \frac{5 T}{s x}+\frac{n e^{2} 2}{m} \\
& c_{x}=\frac{-5 n k^{2} T q}{m} \frac{\delta T}{\delta x}-\frac{5 n e k T q E_{x}}{2 m}
\end{aligned}
$$

$$
\vec{I}=\sigma \vec{E} @ T=0 \text { eves } 0^{-} n e^{2 \pi} / m
$$

THERMAL CONRDCTIUTY

$$
k \equiv C_{V} / \delta T / \& x
$$

EOR $E_{X}=0 \Rightarrow 1<=$
WIEDEMANN-FRANE RATIO

$$
\begin{aligned}
\frac{K}{T} & =\frac{\pi^{2}}{3}\left(\frac{k}{5}\right)^{2} \text { \& HATERNL INDENENUENT } \\
& \approx 2-5 \times 10^{-8}
\end{aligned}
$$

To cer, USE EERDM, - DIRAC

$$
\begin{gathered}
f_{0}=\frac{1}{t+e \in E F / K T} \\
\text { AND GQ (k Lonk Nesok) } \\
\int_{-\infty}^{\infty} \frac{e^{x}=e^{x}}{\left(+e^{x}\right)=d x-\frac{\pi}{3}}
\end{gathered}
$$

END OF MATERIAL COVEREO ON TEST 挺 2

PQLY CRYSTRLLLINE - MANY CRZSZAL STRLCTURES

$$
\leq T R U \in T U R E
$$

$$
\text { } \angle Q U L Q C R T A L \text { TWO OMENSIONAL CPYSTAC }
$$

$$
S T B U C T U R E
$$

$$
s
$$

$$
F A \leq E \quad \quad=N T E Q E D \quad \text { CUQ }
$$

$$
\begin{aligned}
& \text { 9-10-75 (MON) (EEESTLECTVQE) } \\
& \text { CRYSTALSTRUETMES } \\
& \text { SHAELE CRYSTAL-SAME CRTSTAG STRUCTURE } \\
& \text { THOUCGOUT }
\end{aligned}
$$

Body Centereo Cubic

in OA MIGUE
m=ncheesti nercratad

PARALLEL RIREDON
BRAVAIS LATTLCE-RERIONE STRUCTURE DEF: a ${ }^{2}$ R RTS. W SPACE WITA THE PRORERTY THAT THE ARRADEEMENT OE pOLUTS ARQUND A GUEN XT. 15 LOENTICAL WITH THAT AGOUT AMY OTAEN RONTO

EACH OF THESE CAN OE PRMMITVE
$B C O, F C$, OR BASE CENTERED \Rightarrow
A FOLD ROTATION: MAY ROTATE EGO ANA SET THE SAME THUG=
$11-14-75$ (FRI) (GUEST LECTURE)
MLLE ENDUES

DEFINED SPACE LATTICE

VIA TRANSLATION
VECTOR

$$
\begin{array}{l|l}
V E C O \\
7 & n_{1} \\
a
\end{array} n_{2} b+n_{3} \frac{\Delta}{c}
$$

$$
w / S t \text { TO FIND INTEGERS } h, k, l
$$

SVEN THAT

$$
h ; k \cdot l=\frac{1}{p}, \frac{1}{q} \cdot \frac{1}{h}
$$

$$
E x: \quad \begin{aligned}
p & =2, q=3,{ }_{v}=1 \\
& \Rightarrow(b, k, b, b)
\end{aligned}
$$

FOR NESKTIUE NTERCEPTS DEE, L U NO WTENCEPT, USE OO
1 FROM PLANE TO ORIGIN:

$$
\begin{aligned}
& a+a q \frac{1}{p a}, \frac{1 b}{b}, \frac{1}{p c} \\
& \quad=\frac{h}{a} ; \frac{b}{b} ; \frac{L}{b}
\end{aligned}
$$

$$
\begin{aligned}
x \times(2) & =\frac{a}{L} \cos x \\
x x & =\frac{E}{k} \cos , b \\
& =\frac{C}{L} \cos \gamma
\end{aligned}
$$

EXPERMMENTAL LEETERMMNATION $X-R A Y \quad D L E R A O T C O N$
(1) BEACE

$$
n=0 \pm 1=2, \ldots
$$

(2) VAN $\angle A U E$

$$
\vec{a}\left(\vec{s},-\frac{1}{s_{0}}\right)=b^{\prime} \lambda
$$

$$
t=c, z
$$

N $\mathrm{B}^{3-1 L M E R S L O N S: ~}$

$$
\begin{aligned}
& b\left(s_{k}-S_{0}\right)=k \lambda \\
& E\left(s_{1}-s_{0}\right)=C \lambda
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2}}{d^{2}}\left(L^{2}+L^{2}+L^{2}\right)=1 \\
& \Rightarrow d=\frac{a}{\sqrt{R^{2}+k^{2}+L^{2}}}
\end{aligned}
$$

L. VOL UMTTEELL = YV WAT CELL
2. $\vec{a} \cdot \vec{a} *=1$
$\vec{c}-\vec{c}=1$
$\frac{b}{b} \cdot b^{x}=1$
3. $\vec{a} \cdot \vec{b}^{*}=0$

OTHER PRDRERTIES
$1 \vec{r}+(h, k, \ell)=1 \quad(h, k, l)$ LATTICE ANAE
2) $(r+(h, k) \mid=1<d(b, b, b)$
B.RECMARICAL OE F,C.C.iSB.C.C

M-Iフ-25 (MON) WAN FQNCTION FOR ELEETRON

$$
\psi(\vec{x})=e e^{i k \cdot \vec{x}} u_{\vec{k}}(\vec{x}) \text { \& bekeole LATUCE }
$$

$$
U \mathrm{E}(\vec{z}) \text { Q PERIOOL = BLCCK EUNCTIONS }
$$

(1) USE RERIODIC RRDAERXY.

$$
\begin{aligned}
\left|\psi_{k}(x)\right|^{2} & \left.\psi(\psi)(x+a)\right|^{2} \\
\psi_{k}(\vec{x}+\vec{a}) & =e^{i} f(\vec{k}, \vec{a})
\end{aligned} \psi_{k}(x)
$$

KINEMATICAL CONSIDERATIONS:
(1) IRANSLATION

$$
\nVdash\left(x_{0}+x\right)=\psi\left(x_{0}\right)+\left.\frac{5 x}{x}\right|_{x_{0}} x+\left.\frac{1}{2} \frac{s, y x_{0}}{x_{2}}\right|_{x_{0}} x^{2}+\ldots
$$

$$
\begin{aligned}
& \text { RECRPROCAL } \\
& \text { bevne } \quad \vec{a}^{+}=\frac{A T G E}{a} \times \vec{b} /(\vec{a} \cdot \vec{b} \times \vec{c}) \\
& \vec{b}^{*}=(\vec{c} \times \vec{a}) \int_{\vec{b}}(\vec{b} \cdot \vec{c} \times \vec{a}) \\
& \vec{c}=\vec{a} \times \vec{b} /(\vec{c} \cdot \vec{a} \times \vec{b}) \\
& \text { RRORERTIES }
\end{aligned}
$$

$$
\begin{aligned}
\psi\left(x+x_{0}\right) & =\psi\left(x_{0}\right)+\frac{s \psi(x)}{x} x+\frac{1}{2!} \frac{s-\psi(s)}{s x^{2}} x^{2} \\
& =e^{x \delta x_{0}} \psi\left(x_{0}\right)
\end{aligned}
$$

Now $\frac{5}{\delta} \frac{5}{\delta x} \Leftrightarrow \vec{p} \Leftrightarrow+k$

$$
\begin{aligned}
& \Rightarrow \psi\left(x+x_{0}\right)=z\left(x_{0}\right) e^{i x k} \\
& \text { Thus } f(k, a)=\vec{k} \cdot \overrightarrow{0}
\end{aligned}
$$

IN $=-0$:

$$
\begin{aligned}
& z-0: \dot{z}=u_{k}(\bar{x}) e^{i k_{k} \cdot \vec{x}} \\
& \psi_{k}(\bar{x})=u^{2}
\end{aligned}
$$

$\vec{k} \cdot \vec{p}$ METtoD
EAR GLTMAVICR OF ELEETRRNS GQLM. FOR SMALL $1 \leq$.

$$
\begin{aligned}
& \text { GRINANG THRU: }
\end{aligned}
$$

FOR OLPECT GAR MATERPAL (SMALLK)

$$
U_{k}=a_{c} U_{c}+a_{v} U_{V}
$$

VALELUCE EAFONE

$$
\text { VAGENCE BAND A } P \leq A D=)
$$

S WALF E ENCTICN'

$$
\begin{aligned}
& P \text { STATE EUNCTRNS } \\
& 3 \text { STATES (GU/SPN) }
\end{aligned}
$$

$$
u_{k}=\sum_{i=1}^{4} a_{k i} U_{i}
$$

ASEUME Y YMAKL

$$
f U_{i}{ }^{\#} U_{j}(r) d r=S_{i j} \leqslant O R T H O N O R N O R M A L
$$

TGEN

$$
\begin{aligned}
& E_{e} U_{0}+\frac{\hbar}{m}\left[k_{x} P_{x} U_{0}(\vec{r})+k_{4} P_{r} U_{0}(\vec{r})\right. \\
& +k_{z} P_{y} U_{e}(r)=E(\vec{k}) U_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& \int U_{0}^{*}\left(r^{+}\right) E_{e} U_{e}\left(r^{2}\right) d r^{+}+\frac{h}{m} L_{k} f_{c} U_{R_{R}} U_{c} d \vec{r} \\
& \left.+k_{y} \int u_{0} x p_{0} u_{0} d r+k_{z} \int u^{*} p_{z} U_{z}\right) d_{z} \\
& \text { - } \int U_{e}^{*} E(k) U(E) d F \\
& =E_{e}-E\left(k^{\prime}\right)-\frac{\frac{i}{h}}{m}\left[K_{x} / U_{e}^{*} \frac{s v_{e}}{s x} b \vec{x}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =-E\left(\frac{B}{k}\right)+E C
\end{aligned}
$$

$$
11-19-75 \text { (wED) }
$$

$\vec{K} \cdot \vec{P}$ ARPROXIMATION

$$
U_{k}=\sum a_{i} d_{k j} U_{i}(\vec{r})
$$

$$
U_{L}(\vec{C}) \rightarrow N \text { CONDWTHN BANQ }
$$

$$
U_{V}(\vec{r}) \rightarrow M_{Y}<A b e N C E \text { BANO }
$$

SAVE $O=\sum_{i=1}^{n}\left\{E_{i}-\frac{1}{m} \sum_{R-p}-E(k)\right] a_{k i} V_{i}(\vec{r})$
USINE ORTHOCONALITY OFUCS AND
$U S$ GIVES EOUR EQUATICNS.
 IN SUMNAKY, DET, OE A COEEFLOIENTS 1S:

$$
\begin{aligned}
& E-E(\vec{k})(\vec{T}) \\
& =\mathcal{N e}_{c}^{*} E_{c}+\frac{\hbar}{m} L_{k} K_{c} U_{c}^{*} P_{x} U_{c} \\
& +k_{+} \Lambda y+k_{z} \wedge z-1 u_{e}+E(k) \\
& \int U_{c}^{*} E_{r} U_{x} d_{1}^{\infty}+\frac{\hbar}{m} \sum_{x} L_{0}^{*} Q_{x} L_{0} d \vec{B}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\hbar}{m}+k_{x} \int_{e} U_{k} U_{x} U_{x} d U_{x} \\
& \text { (NOTE: } \operatorname{LU}^{女} P_{x} L_{x} d \vec{P}=\int U_{c}^{*} P_{r} U y d \vec{r} \text {) }
\end{aligned}
$$

PLUESINE ON GIVES:

FOUR SOLUTRDNS ARE

FOR SMALL K, ONE MAY APDPOKIMATE:

$$
E(k)=E \in \pm \frac{2 K^{2} p^{2}}{E E_{1}-E V}
$$

$$
E^{4}
$$

$$
\begin{aligned}
& 0= \\
& {\left[E_{e}-E(k)\right]\left[E_{v}-E(k)\right]^{3}-k_{x}^{2} p^{-2}\left(E_{v}-k\left(k^{2}\right)\right)^{2} 2} \\
& -k y^{2} p^{2}(E v-E(\vec{k}))^{2}-k p^{2}(E v-E(\mathbb{E})) \\
& \text { SIMPLIFYINE: } \\
& 0=\left[E_{k}-E(k)\right]^{2}\left\{\left[E_{c}-E(\vec{k})\right]\left[E_{b}-E(k)\right]-k^{2} p^{2}\right]
\end{aligned}
$$

banr Structure Calcumatron
HARTKE METKO
ON ELECTRONS, 1 W OUTER SMELLL $V(N) \Leftrightarrow A-1$ WNER EVESTRONS
(2) ASSUNEN SRHERECAL SHMMETRY
(3) AEQULQED SELE SRNSISTEMCY
$C H A R E E$ OENSTT: $b=e^{N-1} \sum_{i}^{N+} \psi_{i}$
CAVE POTENTLAL V(C)
AsSuME TWO ELECTRONS $\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)$

$$
\begin{aligned}
& \text { TO LNCLUDE EXCLUSIGN PRWCLRLE }
\end{aligned}
$$

INGENEREAL

$$
\begin{aligned}
& \text { EENEREAL } \\
& \left.\frac{1}{N!} \right\rvert\, \phi_{1}\left(x_{1} \quad \phi_{2}(x) \cdots\right.
\end{aligned}
$$

$$
11-21-75 \quad(F R z)
$$

(GANOMSTRUCTURE MATERIAL FROM LAST LECTWRE W BCOK)

HARTHE - AREH RRRROACH TO CALCLLATINS BANRSTRLC

TOO HALRY TO SOLVE.
BORN-OPPENHELMER ARPROXIMATION SEPERATE ELECTRONIC \& WRRATIONAL MOTION
 N
Q noclevs

$$
\begin{aligned}
& A S S L M E \quad y=3 E \psi_{n} \quad \text { (NEEEECHEN) } \\
& \text { GIUES } \\
& \text { He+Hn) } H_{e} \psi_{n}=E \not Z_{0}
\end{aligned}
$$

EEERENCES= (1 SRATER,
quantun thewry of 'heztcentas

$$
\text { RAD SOLiQS }(2)
$$

ELSLATER - QUANTUM TEECRY DE MATTER
S $=1 M A N-E L E T E T N S$ ANQ
pachicns in Sawds

USNE $2^{\text {nd }} 3^{\text {Rd }} 5^{\text {YH }}$ TERMS
HARTRES ES
$A \sin E \quad E_{e}=\int \psi_{e}^{* H} \psi_{e}$

$$
\begin{aligned}
& \Rightarrow V e e=\frac{1}{2} \sum_{\sum_{j}} \frac{e^{2}}{\Gamma_{i}-\bar{r}_{j}}-\frac{1}{z} \sum_{F_{k}} \frac{e^{2}-r_{j}}{F_{k}}
\end{aligned}
$$

$\psi_{e}=\phi_{1} \phi_{2} \cdots \phi_{j} \leqslant$ EACH NOL e^{-}

$$
=\frac{1}{11} 4
$$

MCLUDZE $S \angle A T E Q \quad D E T E R M N A N T$

$$
\psi_{e}=\frac{1}{\sqrt{N!}\left|\psi_{i} \cdots\right|}
$$

THE

$$
E_{e}=\sum_{\alpha} E_{j}+\frac{1}{2} \sum_{\infty} q_{0} p_{2}^{*} R_{j} \phi_{0} \phi_{i}
$$

Where $V_{i j}=\frac{R_{i}}{R_{k}-R_{d}}$
HARTREE EQN. IS

ITS A ONE-ELEETRQN EQ.

$$
11-24-25 \text { (aten) }
$$

HARTREE- FOCH SUMMARY
WAYS TO DETERMINE ENERGY LEVELS

$$
\phi_{n}=w A N E N E \text { EN } C^{\prime 2} E L E .
$$

YOU $6 E T \quad H \quad \sharp=E \neq$
WANNA MINNIE USING VARIATION PRINCIPLE HARTREE- FOCH WCLUDED EXCHANGE TERMS

$$
\frac{1}{\left.\sqrt{N!}\left|\begin{array}{ccc}
\phi_{1}\left(x_{1}\right) & \phi_{1}\left(x_{2}\right) & \cdots \\
& \cdots \cdots \phi_{A}\left(x_{n}\right)
\end{array}\right|, ~\right]}
$$

FOR TWO ELECTRONS

$$
\begin{array}{r}
y=\frac{1}{2!}\left(\begin{array}{r}
\left(\phi_{1}\right) \\
-\phi(x=)
\end{array} \phi_{2}(x a)\right. \\
\left.-\phi_{2}(x)\right]
\end{array}
$$

EACH SOT TWO PARES

$$
\phi,(x)=\phi_{1} \operatorname{spAcE}(\vec{x}) \text { picshN }\left(m_{ \pm}+\frac{1}{2}\right)
$$

RESULTING ENERGY IS

$$
\begin{aligned}
& E=\sum_{i} \hat{p}_{i}+\left(-\frac{\hbar^{2}}{2 m} \nabla_{i}^{2}\right) \phi_{i} \\
& +\sum_{i, d} \int_{i}\left(x_{1}\right) \phi_{f}^{*}\left(x_{2}\right)\left[\frac{e^{2}}{4 \pi x^{2}-x^{\prime} \mid}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\times \phi_{t}(2) \phi_{1}(1)\right]^{\operatorname{spn} \pi} \dot{x}_{2} d x_{1}
\end{aligned}
$$

HOMEWOEK PROQLEM: DESCRLQE UN ONE OR TUO PAEES A METHOD OE ENEREY BAND STRUCTURE GALCULATION. $E_{X}=, \angle C A O \Rightarrow \angle N E Q R$ COMRNATION QEATOMIS DRQLALS

2, ORTHEO NLANE WAKE (OPW)
\& W-S CLLLLLLAY (WIGNER-SEIT Z)
$4, \times-\infty$ METCOD, 5.TIGHT BINDINE APRROXMATION POINT OUT
a. APPLICAGLLTY AND WHY \&WHAT
b. OPTIONAL PROQLEM =WHAT IS THE

PHZSICAL SIENLERCANCE OF THE EXCHANGE TERM? (HNT: PAOLI EXCLUSION PAINCIPLE) LOOKAT TWO EAECTRON WCVE EUNCTION.
$A B S O R B T I O N O F \angle I G H T H N S O L I D$
$M A X W E L S E G M S$

$$
\begin{aligned}
& \text { ELUES SWNELECTRICEONST. } \\
& \frac{S^{2} E}{\delta x^{2}}-\frac{E}{c^{2}} \frac{S^{2} E}{b^{2}}=\frac{4 \pi 0}{E^{2}} \frac{S E}{S E}
\end{aligned}
$$

COPTIONAL HOMEWORL \rightarrow DERUUE I) $A S S L M E \quad E=A \subseteq<(K K-L E)$
YOU EET

$$
\frac{L^{2}}{L^{2}}=\frac{E}{L^{2}}+\frac{6 \pi G}{L C^{2}}=\frac{1}{\left.\square y^{2}\right)^{2}}
$$

REFRATIVE $N D E X \quad(a=0), F=\sqrt{E}$
MAEINARYT TEIRM DESERIGES
ABSORKTION

$$
\begin{aligned}
& r^{*} \triangleq E v x \text { (comparx atELEctarconst. } \\
& =[E+\alpha 4 \pi O / \omega]^{1 / 2} \\
& =R(1+\angle)^{-}=\text {INDEX OE PEERACTION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { iNes } \varepsilon=A e^{-\frac{4}{s}+\gamma x} e^{k(k x-\infty)} \\
& \left.\begin{array}{l}
R E F R, T N D E X \\
r=
\end{array} \epsilon+\left(\epsilon^{2}+\frac{6 \pi^{2} C^{2}}{\omega)^{2}}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \\
& \gamma=\left[1-6 / n^{2}\right]^{1 / 2}
\end{aligned}
$$

HOMEWORK: WHAT IS O FOR I ${ }^{\text {W }}$ TO VARY FROM \sim BY $>10 \% 0$ GIVE ANSWER IN $(\Omega-c m)^{-1}$ WITH $\lambda=50004$. ANSWER IS
H000/ $\Omega 0 \mathrm{~m}$
$d I=-\alpha(1-R) I d x \leqslant R \operatorname{ssum} E$

$$
\begin{aligned}
\alpha & =\frac{2 \omega}{\pi} r \quad \leq A B \operatorname{son} \beta+10 N=\gamma \\
& =\frac{4 \pi}{\pi}
\end{aligned}
$$

MAXWELLS EQN'S GIVE

$$
\begin{aligned}
& \varepsilon_{y}=A e^{i \omega\left(r_{1}^{x}-t\right)} \\
& H_{z}=A e_{1} e^{i} \omega\left(r^{x}-t\right) \\
& \text { REFLECToR LIGHT = } \\
& \text { ASSUME TRANSMiTTED LIGHT } \\
& E_{y}=A^{\prime \prime} e^{i \omega\left(r^{2} E-t\right)} \\
& H_{z}=A^{\prime \prime} r_{2} e^{i \omega} \omega\left(r_{2}^{*} x-t\right) \\
& \text { SHOW } R=\text { REFLECTION COEFFIEIENTE } \\
& =A^{\prime} A^{\prime} A^{*}=\frac{\left(r_{2}-r_{1}\right)^{2}+\left(r_{2} \gamma_{2}-r_{1} \gamma_{1}\right)^{2}}{\left(r_{2}+r_{1}\right)^{2}+\left(r_{2} \gamma_{2}+r_{1} \gamma_{1}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A^{\prime}}{A}=r_{z}-r_{1}\left(r_{2}+r_{1}\right) \\
& \text { SPECIAL CASES:(1) } C=0, C=? 1.5 \quad\left(n_{1}, n_{2}\right) \\
& \text { SXVACOUM METAL INTERFACE } \\
& \text { CALCULATE REFLEcTION COEFE. } \\
& \text { FOR METAL, } R \simeq 1-2 \sqrt{2 \pi O} / \mu
\end{aligned}
$$

THUS PROF MNTENTENALY
LEFT BLANK
A

$$
11-26-75 \quad(w=0)
$$

$$
\text { ELECTRON } C A S
$$

$$
\text { w E.M. FIELO FEEQ OF } L
$$

$$
m_{e}^{+} \frac{d v}{d t} \frac{m e v}{q}=-e e^{-i \omega t}
$$

SOLUING

$$
\begin{array}{lll}
\text { LUNG e } & \frac{E}{} e^{-i \omega t} & r=\operatorname{SCA} H F E N G \\
V=T M E
\end{array}
$$

CURRENT DENSITY: $\quad J=O E=n \in V$

$$
n=\# a F \quad E L E T R O N S / \mathrm{cm}^{3}
$$

GIVES:

$$
\sigma^{w}=-\frac{4}{4 \pi} e_{e}^{k}
$$

$$
\epsilon_{e} \Leftrightarrow \angle A T T I C E
$$

$$
\epsilon=\epsilon_{L}-4 \pi n e^{2} / m_{e} *\left\langle\frac{\gamma 2}{1+\omega^{2} \gamma^{2}}\right\rangle
$$

$\langle i \leftarrow$ AVERAGNG OVER ENEREY

$$
\begin{aligned}
& \sigma(\omega=0)=e^{2} \\
& \alpha=\frac{4 \pi}{c r} \sigma \\
& \sigma=T: \alpha=\left[n e^{3} \lambda^{2} / H M M_{n}\right. \\
& r \lambda=c \\
& \alpha=(\square) \frac{n}{\omega^{2}}\langle T\rangle^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma^{*}=\frac{n e^{2}}{m^{2}}\left(\frac{\tau}{1+\omega^{2} \alpha^{2}}+i \frac{\omega q^{2}}{1+\gamma^{2}}\right) \\
& =\sigma-\frac{i \omega}{4 \pi} \epsilon_{R} \\
& \epsilon_{e} \& E L E C T R O N I C \text { CONTRIRUTION }
\end{aligned}
$$

$$
12-1-7
$$

SECOND TEST ANERACER N YUE SO'S

$$
\begin{aligned}
& \text { REFLECTUTY OF } A R E T A L \\
& \text { P工 } 1-\sqrt{\frac{\sum}{4 \rho} \quad \text { EORHI } \omega ~}
\end{aligned}
$$

$$
\begin{aligned}
& o(w \rightarrow \theta)=\frac{n e^{2}\langle\gamma\rangle}{m e^{w}} \\
& m^{t}=E E E L T V E M A S S \text { OE ELECTRON } \\
& \alpha=A B S Q Q C L O L \text { CDEERLELENT (MBEERSLAW) } \\
& =\sqrt{\frac{s \pi}{E}}\left(c_{0} \omega\right)^{1 / 2} \\
& W T<S 1 \text { EOR A METAL (LOTMA EREE ELEE) } \\
& \omega \rightarrow \gg 1, \quad o=\frac{n e^{2}}{n e^{2}}\left(\frac{1}{7}\right) \text { (sELCENDESQR}
\end{aligned}
$$

$$
\begin{aligned}
& N=R E G L \text { RRRT OF REIERQTIONINDEX }
\end{aligned}
$$

BAND TO BANR TRANSTIION

ASSUME NOUDECEN EMAEY DE VALENCE BAND

$$
\begin{aligned}
& E_{r}\left(k^{\prime}\right)=-E_{6}-\frac{\hbar^{2}}{z^{2}} k^{2} \\
& \left.E_{C}\left(k^{\circ}\right)=k^{2} k k^{2} L^{2}\right) \\
& \text { FREN ENERCR SONEERUATMEN: } \\
& \hbar \omega=E_{c}\left(\vec{K}^{\prime \prime}\right)-E_{k}\left(k^{\prime}\right)
\end{aligned}
$$

TRANSITION RRORAQLLITY
MATRIX ELEMENTS:

MATRIX ELEMENT

$$
\int_{k_{k}{ }^{2}} \psi_{m}^{*} H_{0}(\vec{r}) \psi_{0}
$$

$\Psi_{S}=$ WHLENCE BAND WAVE EUNCTRON

$$
=\frac{t}{\sqrt{N}} U_{p}(\vec{r}, \vec{k}) e^{\vec{A} k^{\prime} \vec{r}}
$$

YM = CONAUCTION BANR WAVE FUNCTION

$$
=\frac{1}{\sqrt{N}} U_{c}\left(\vec{R}, \vec{k}^{\prime}\right) e^{n+\vec{r}}
$$

$U E B L O E H$ EUNCTIONS
MOMENTLM ORERATRR: $P \leq$ CN B

$$
\text { Now } \vec{A}=\hat{a}_{0} A \cot \left(\frac{\vec{L}}{\mathrm{~L}} \vec{r}-w t\right)
$$

$$
\text { USUALLY } \quad\left|\frac{c}{\mid}\right|=\frac{w r}{c} \quad 2 r=\operatorname{ce}\left(n^{*}\right)
$$

$$
\begin{aligned}
& H^{\prime}(R)=\text { FERM, ROTENTLL } \\
& =\frac{i 0 \hbar}{2 b} A \quad e \quad i\left(E \cdot L^{2}-\operatorname{t}\right) \hat{a}_{0} \cdot \vec{V}+E \cdot E .
\end{aligned}
$$

$$
\begin{aligned}
& W=M U S I A Q Q \text { ATEAM FOQ AQQLED H FIELO } \\
& \begin{array}{l}
\vec{\nabla} \times \vec{A}=\vec{A}, \nabla \cdot A=0 \quad \underset{A}{C} \\
\Rightarrow p=\lambda \vec{D}+\vec{C}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& H^{\prime}(\vec{C})=\frac{\operatorname{ke}}{\operatorname{He}} \vec{A} \vec{\nabla} \\
& \operatorname{coc} L E A \cdot \nabla, \gg\left|A^{2}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { RATE GE TRANSITION } \\
& \frac{4 \operatorname{RHE}^{2} k^{\prime} l^{2} \operatorname{cin}^{2}\left[\left(E_{N H}-E_{k}-\hbar \omega\right) \frac{E^{2}}{2 h}\right.}{\left(E_{K^{\prime}}-E_{k}-\hbar \omega\right)^{2}}
\end{aligned}
$$

MATRIX ELEMENT

$$
\begin{aligned}
& \times\left[e^{i \vec{k} \cdot \vec{r}^{\prime}} \hat{a}_{0} \cdot \vec{\nabla}\right] U_{v}\left(\vec{r} \vec{k}^{\prime}\right) e^{i k \cdot \stackrel{\rightharpoonup}{k}} d^{3_{r}} \\
& =\frac{i e \hbar A}{2 N m G} \int u_{c}^{*}\left(r, k^{\prime \prime}\right)\left[\vec{a}_{0} \cdot \vec{\nabla} u_{V}(\vec{r}, \vec{k})\right. \\
& \left.+i\left(a_{0} \cdot \vec{k}\right) u_{v}(\vec{r}, \vec{k})\right] e^{i} \cdot\left(\overrightarrow{k^{*}}+\vec{k}-\overrightarrow{k^{\prime}}\right) \cdot \vec{r} \\
& \text { Now } U_{c}(r, k) \perp U_{n}(r, k) \\
& \text { \#以"一K「EヒS SMALL } \\
& \Rightarrow \int_{c} U_{c} U^{*} d^{3} r=0
\end{aligned}
$$

CHANGE INTEGRAL OVER JUST UNIT CELL， THEN SUM UR CRSYSTALS，GET

$$
\begin{aligned}
& \text { NONZERO ONLY FOR } k^{\prime}+\vec{Z} \text { Kt } \\
& \text { THEN } H_{K^{\prime \prime} K}=N \operatorname{SURTT}[\text { IdBr }
\end{aligned}
$$

$12-3-75$ (WED)
TRANSITION PROB. W SEMICONDUCTOR

$$
\begin{aligned}
& H_{K^{\prime \prime} \rightarrow k^{\prime}}=\frac{\text { flt } A}{2 m C} \int_{C H_{L}} U_{e}^{*}\left(P_{i}, k^{\prime \prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H_{k^{\prime \prime}}^{A L O W E D}=-\frac{e A}{2 m e}\left(\hat{q}_{0} \cdot \vec{p}_{k}{ }^{\prime \prime} k^{\prime}\right) \\
& \vec{P}_{k^{\prime \prime} k \prime}=-i t \int_{c \in L L} U_{c}\left(\vec{\Gamma}, \vec{k}^{\prime \prime}\right) \vec{\nabla} U_{k}\left(\vec{r}, \overrightarrow{k^{\prime}}\right) d^{s} \vec{r} \\
& \text { (MUST USE aENSTTYRESTATES NOW) } \\
& \text { RECALL } P=-\dot{K} \vec{\nabla}
\end{aligned}
$$

ASSUME MONOCHROMATIC INCIDENCE USE DENSITY OE STATESTITEGRATE OVERS

$$
\begin{aligned}
& \text { tRANSITION }=P(E) t=\frac{e^{2} A^{2}}{4 \pi^{3} M^{2}} \\
& \left.\left.\times \int \hat{a}_{0} \cdot P_{k}{ }^{\prime \prime}\right)^{2}\right)^{2} \frac{\sin ^{2}\left[\left(E_{k}-E_{k}-\hbar_{w}\right)^{2}\right.}{\left(E_{k}-E_{k} \cdot \hbar_{\omega}\right)^{2}} \\
& { }^{x} d^{3} K^{\prime}
\end{aligned}
$$

IN SPHERICAL COORDINATES

$$
\begin{aligned}
& d^{\prime} k^{\prime}=k^{\prime 2} d k^{\prime} d \Omega \\
& \left.\int 1 \hat{a}_{0} \cdot{\stackrel{\rightharpoonup}{p_{k \prime \prime}^{\prime}}}^{2}\right|^{2} \Omega=4 \rho \bar{P}_{k \prime \prime}^{2}
\end{aligned}
$$

SO TO GOOD APAROXIMATION, MAY THKE PKKK K' TERM GUTSNDE 1ATEGRAL.
NEFINE $M_{n}^{*} \equiv \frac{m_{e} m_{n}}{M_{e}+M_{n}}$

$$
K_{E} \Rightarrow \hbar W_{0}=E_{0}+\frac{\hbar^{2} K_{0}^{2}}{m_{2}}
$$

$$
\Rightarrow k_{0}=\frac{\sqrt{2 m}}{\hbar} \sqrt{\hbar \omega-E_{0}}
$$

POT INTO INTEERAL SLKUEET
TO EARLIER RESTRICTIONS. (SIMRGAR TO RNEVIOUS HOMEWORK) YA GET

$$
p(E)=\frac{e^{2} A^{2} \sqrt{2 m} \quad \overbrace{n}^{2}}{4 \pi m^{2} c^{2} \hbar 4} \quad \hat{K}^{\prime \prime} k^{2} \sqrt{\hbar w-E_{0}}
$$

MUST PELATE THIS PMOBABLLITY TO AN ARSORETION COZEEICIENT
LOE NCNDENT PHOTONS = $\frac{151}{\frac{1}{1} \omega}$

$$
\vec{S}=\text { POYNTINE VECTOR }
$$

$$
\begin{aligned}
& \text { NUNBER }=e^{-\alpha d} \times \text { HOF NOTONS } \\
& \text { ABSORBEQ } \\
& d=T H L C K N E S S \text { OF MATERIAL. }
\end{aligned}
$$

$$
\begin{aligned}
& F O R \quad \text { ad } \ll 1 \\
& \quad P(E)^{\pi \omega} /|S|=\alpha
\end{aligned}
$$

NOW $\vec{S}=\frac{C}{4 T} \vec{E} \times \vec{H}$ (EROM FIELDTHEORY)

$$
\begin{aligned}
& =A^{2} K \omega / \delta T=K=K \text { Putgrod } \\
& \nabla \times \bar{A}=\bar{F} \\
& f_{K^{\prime \prime} K}=O S C \angle \angle L A T O R \text { STRENETH } \\
& \begin{array}{l}
K^{\prime \prime} K^{\prime} \geq|\overline{\text { PueNe }}| \geq \\
=\frac{m \pi}{m}
\end{array}
\end{aligned}
$$

THEN

$$
\begin{aligned}
& \alpha_{\text {ALEQWEO }}= \frac{2 \times 10^{5}}{r}\left(\frac{2 m^{+}}{m}\right)^{3 / 2} f\left(\hbar \omega-E_{6}\right)^{\frac{1}{2}} \\
& \text { MESERPTIGN }
\end{aligned}
$$

ADRAOXIMATION IN SEMICONDLETOLETS

$$
f \therefore 1+\frac{m e}{m p} \Rightarrow \begin{gathered}
\text { SAMEGONDUSGOR } \\
\text { MAMOULION BAND } \\
\text { CRANSIION }
\end{gathered}
$$

REFERENCE: $A A$. SAMTH: WAUEMECHANICS OE CRYSTALLING SOLIOS
EOR FOBIDDEN

$$
\begin{aligned}
& P(E)=\frac{e^{2} A^{2}}{\left.12 \pi m^{2} \frac{m^{*}}{h}\right)^{5 / 2}}\left(f^{\prime}\right)\left(\hbar \omega-E_{a}\right)^{3 / 2} \\
& \alpha_{\text {FGRBDCEN }}=1_{0} 8 \times 10^{5\left(\frac{2 m}{m}\right)^{5 / 2} \frac{f^{\prime}}{r}} \\
& \times \frac{1}{\hbar \omega}\left(\sqrt{\hbar}-E_{c}\right)^{3 / 2}
\end{aligned}
$$

FOR ALLOWED

$$
m_{r} \approx 4, c=4, E=1, \hbar a-E_{E}=0.01 e
$$

$$
\Rightarrow \alpha_{A+G Q W D} \leq 7 \times 10^{-3} / \mathrm{cm}
$$

SAME VALUES WITH

$$
\begin{aligned}
& f^{\prime}=0.1, \hbar \omega \\
&=\operatorname{Fon} \text { orson } \simeq 5
\end{aligned}
$$

IN se LVINE

12-5-75 (FRI)
HOMEWORK (DUE FRIDAY):
DOERIVE THE ERERS-MOLL EQUATION FOR CURRENT FLOW IN A
TRANSISTOR
(2)EXPLAN THE DERIVATION IN PHYSICAL TERMS
(3) WHY DOESNT CURRENT LEAVE (ENTER) AT THE BASE?

$$
\begin{aligned}
& U_{v}\left(r_{2} k^{\prime}\right)=U_{v}\left(\vec{a} / \overrightarrow{k^{\prime}}\right)+\left.\vec{k} \cdot \nabla_{k} U_{V}\right|_{k^{\prime \prime}} \\
& +\frac{k^{2}}{2}!\nabla^{2}()+\ldots \text { in }
\end{aligned}
$$

ABSopBTION COEREICIENTS

DIRECT ALLOWEO TAANSISION

$$
a \sqrt{\hbar w-E_{s}}
$$

DIRECT FORBIOREN TRANSITION

$$
F \omega\left(\hbar \omega-E_{e}\right)^{3 / 2}
$$

INAIRECT TAANSITIONS
ALLOWEO：

$$
\frac{\left(\hbar \omega \pm \hbar \omega_{p_{H O N O N}}-E_{\varepsilon}\right)^{2} e_{(-1}^{\mathrm{h}} \omega_{p / / k T}}{\left.e^{\frac{h_{T}}{k T}}-1\right)}
$$

FORBIDDEN：

$$
\begin{aligned}
& e^{\text {据 }}-1
\end{aligned}
$$

$$
\stackrel{\rightharpoonup}{k_{v a L}}=\overrightarrow{k_{e+t a}+k_{\operatorname{con}}}
$$

WOREEI TRANSITION

OPTIQNAL PROGLEM：FIND ARGUMENT
FOR ABSERGTIQN RELATION＝Wlo
HARY QM．CDENETK DE SHRTE゙S
ANU ocavpalict
(Gooo qual questions ro konnow)
(1) P.N JUNCTION

n	ρ
acte	Hoces

CHARGE NUETRALITY IN BOTH NUNCTION. WHEN YA LBRING EM TOGETHER?
$\frac{n}{e_{\infty}^{\infty}}$

$$
J=0=(\quad \nabla n(x)+C) E
$$

$$
\begin{aligned}
& E=f\left(N_{0}^{\dagger}, N-_{Q}\right) \\
& =f \text { (lomizER Dowors \& ACEEpTORS) }
\end{aligned}
$$

$$
\begin{aligned}
& n_{p}=n_{n} e^{-c V_{t} T} \\
& \begin{array}{l}
\text { EOR BIAS } \\
n_{p}=n_{n} e=(e(V, t+) / k T)
\end{array} \\
& \text { SMMLCARLG } \\
& p_{n}=p_{p} e-e\left(V_{1}+V\right) / K T \\
& \begin{aligned}
J & =\left(\text { Const }^{\prime}\right)\left(n_{p}+p_{n}\right)+\left(n_{n}+p_{p}\right) \\
& =\left(\operatorname{const}^{-1}\left[\left(a_{n}+p_{p}\right) e^{-e_{N T}}-n_{n}+p_{p}\right)\right]
\end{aligned} \\
& =v_{s o}\left[e^{q W / K T}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { AT ROLM TEMP? } \\
& \frac{1}{1+5} a \frac{1}{02 \leq W L S}
\end{aligned}
$$

IREVERSE PRERKDOWN
(NOT INCLUDED IN OUR MODEL)

102

MORELINS IN \& LNEAR REGION

COMPOTATRON OE NNCTICN VQLTAEE

$N_{H}+=1 O N L E E D$ OONAR ATOMS

$$
N_{A}^{-}=1 O N E E O \text { ACCERTOR }
$$

$$
u=x_{0}+x_{a}=\sqrt{2 E E T}\left(\ln _{a} \frac{N_{i} N_{a}}{N_{i}}\right)\left(\frac{1}{N_{A}}+\frac{1}{N_{0}}\right)
$$

$$
V_{0}=\frac{K T}{e} \operatorname{Len}\left(\frac{\Delta A N_{D}}{N_{0}}\right)
$$

$\omega=\left[\frac{2 e_{e} V_{s}}{L_{0}}\left(\frac{N_{0}+N_{0}}{N_{0}}\right)^{L_{2}}\right]^{V_{2}} \sqrt{V_{3}}$
$\omega(V)=\operatorname{const} \sqrt{V}$

$$
\begin{aligned}
& J=U 50\left[1+\frac{V_{L}}{K T}+\frac{1}{K} \frac{V_{T}}{2}+\ldots . \quad-1\right] \\
& A \operatorname{son} e^{-\quad \text { qu } \ll 1} \\
& J=\frac{q V \leq 5}{k}
\end{aligned}
$$

$\omega(v) \approx \sqrt{v}$

QRERATING PRINEIPLE OF EET TRANSISTOR DEVLCES LOOK MORE LKE (NEQUALVREUM)

$2 \cdot 8=75$ (WDD)
TRANSUSTCR
K Con conbion anten

MNDT MMEEDANCE, RN, IS EMALL
COMRARED WITB RLOAB
$I_{E} \cdots I_{C}$

COMMON BASE

$$
\begin{aligned}
\alpha & \equiv \text { CURRENT GAIN } \\
& =\text { FRACTION OF COLECTOR CURRENT }
\end{aligned}
$$

MOVING ACROSS EMITTER UUNGTAON

$$
I_{n e} \ll I_{p 5} \quad I_{n c} \ll I_{p c}
$$

ie Ane, Inc smab whet. Ire

RN JUNCTION:

$$
J=q\left[\frac{D_{p} p_{n 0}}{L_{p}}+\frac{D_{n}}{L_{n}} A_{p}\right]\left[e^{\left.\frac{Q_{V}}{V T}-1\right]}\right.
$$

WHERE
$D_{n}=$ OLELUSION CONSTANT FOR ELECTRONS
$D_{p}=$ M HOLES
$\angle n=M E A N$ FREE PATH FOR ELECTRONS (DEEUSZION LENGTH)

$$
L_{p}=\text { FOB HOLES }
$$

$P_{n o}=E Q U A L L G R L U M$ CONCENTRATION OF HOLES ON N SIDE

$$
n_{p_{0}}=E O R E L E C T R O N S \text { ON P SHOE }
$$

$$
\begin{aligned}
& p=p_{n} e^{G V E R T} \leftarrow Q O L T=M A N \text { ARPNOX. } \\
& \text { ASSUMPTIONS: }
\end{aligned}
$$

(1) "ABRUPT" OERRETIGN ZAYER
AsSUMPTION

(2) BOLTEMAN APAROXINATION
(3)CONSTANT E $\Rightarrow h$ CURRENT

$$
\text { THRU DEPLETISN } \angle A Y E R
$$

(L THRU JUNETION)
LOW LELEL INUEETION
(4) LOW LEVEL INJECTION
ELGETRON HOLE DENSITY

$$
\begin{aligned}
& V=V_{a}-V_{j} \\
& V_{0}=A p p l E D \text { bis valtabz } \\
& \text { V = BUILT IN JUNCTION BIAS } \\
& n_{p}=n_{n} e(q / k T)\left(V_{a}-V_{d}\right) \\
& =n_{n_{0}} e^{q V_{a}} / k T \\
& 1 E=E_{E}^{E} E_{a} \\
& \text { 做 Cons } A_{A N D}=N_{D} E^{-E_{K} T} \\
& n_{i}{ }^{2}=n p \leftrightarrow M A S \text { RCTRON LAW } \\
& n_{p}=\# \text { OF } e^{=} O N P \text { SIDE WHEN } \\
& \text { Va is APRLIED } \\
& n_{n}=\text { CONCENTRATION OF E ON } \\
& \text { n hMo } \\
& p_{n}=p_{n_{0}} e^{9 \mathrm{Va} / \mathrm{kT}}
\end{aligned}
$$

（I）CONTINUITY Eq；（OF CHARGE）

$$
\begin{aligned}
& \frac{d n}{d t}=G-\frac{2-n E}{T}+\frac{1}{q} D \cdot U n \\
& G=R A T E \text { GFENERATON OFE-hRANS } \\
& n-n_{0}=E X C E S S \text { CARRIER DENSITY }
\end{aligned}
$$

$$
\text { Honer } \Rightarrow \frac{d f}{d f}=C=\frac{p-p_{0}}{f_{p}}=\frac{1}{q} D \cdot \frac{J_{p}}{D}
$$

II) CURRENT EQUA TION (EROM BOLTEMAN XRORT Eq.)

$$
\begin{aligned}
& J_{n}=q L_{n} n E+9 D_{n} P n \\
& J_{p}=q \mu_{p} n E-q D_{n} \stackrel{\rightharpoonup}{\nabla} p \\
& p_{2}=\frac{q}{n}\left\langle V^{2} \quad\left\langle V^{2}\right\rangle\right. \\
& D=\frac{\left\langle v^{2} \eta\right\rangle}{3} \\
& D_{n}=\frac{15}{9} \mu_{n}
\end{aligned}
$$

COMBINNE I + I : (14 1-D)

$$
\text { III). } D_{n} b^{\frac{3}{n}} x^{2}+4 x_{n}\left[E \frac{d n}{d x}+\frac{n d E}{d x}\right]-\frac{n-n_{0}}{n}=0
$$

$A_{p} \frac{d^{2} p}{d x^{2}}-\operatorname{up}\left[E \frac{d p}{d x}+\frac{p d E}{d x}\right]-\frac{p-p}{p}=0$ NEELECT $\frac{d E}{d X}$

$$
\text { ASSUME: } \quad \frac{n-n_{0}}{R_{n}}=\frac{p, p_{0}}{p_{p}} \in \text { NEUTRALIT }
$$

IV) COMBININE, YOU GET: (ADONE)

$$
\begin{aligned}
& D \frac{p \frac{d x^{2}}{d x^{2}}+n \frac{d^{2} p^{2}}{p+n}}{p}+E^{p} \frac{p \frac{d n}{d \lambda}-n \frac{d p}{d x}}{p-n}-\frac{p-p_{0}}{p_{n}}=0 \\
& \mu=\text { MoDIFIEa movilut }=\frac{p \cdot n}{\frac{n}{\mu_{p}}+\frac{p}{L_{n}}} \\
& D=\frac{n+p}{\frac{n}{D_{n}}+\frac{p}{D_{n}}} \\
& \text { USEORL EBER'S MOLb }
\end{aligned}
$$

LOW LEVEL MJECTION:
DA $Q n \quad n$ S10E $\ll 1$

$$
\text { (} \angle O N T R O L E D \text { BY MNORTT) }
$$

HIGH LEVEG INJ.

$$
p \approx n
$$

REDUCES TO DNFFLSION Eg.
SMEE FIELD TERM BEEOMES
NEGLIG\|BLE.

PN
EOR AN ARQURT UUNCTION

$$
\begin{aligned}
& J_{p}(a n n \operatorname{siDE})=-9 D_{p} \frac{g p}{x} \\
& \text { swen }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ANSWER IS } \\
& p=p_{n 0}=p_{n 0} e^{-k_{p}}\left(e^{\frac{q}{1} \frac{1}{7}-1}\right) \\
& \text { THIS 1S FREM } \\
& \frac{d z}{d x^{2}}=
\end{aligned}
$$

$$
\begin{gathered}
12-10-75 \text { (WEO) } \\
\text { REvEN }
\end{gathered}
$$

$$
\begin{aligned}
& n \\
& n_{p}=n_{p} e^{q V a / K T}=\text { ASURTION } \\
& n_{p}=n_{n} e^{-q V o / K T}
\end{aligned}
$$

I.CONSERVATION OF CMARCE
(道 continutr tQu4TIQN)

$$
\text { II. Gunnent }=U_{n}=q_{q} \min _{\text {Monntr }} \vec{E}+q D_{n} \vec{\nabla} n
$$

IIFOR P. H VLNCIION

IK. ASSUMINE LOW LEVEL INNEGTION= HOLE CWRKENT DENSITY FOR A R-R JUNTTOM

$$
\begin{aligned}
& \frac{\delta p_{1}}{s x_{1}}-\frac{p=p_{n}}{D_{n} p_{p}}=0 \\
& \text { DEFNE: }{ }^{N} L_{p}=\sqrt{D_{p} T_{p}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v_{p}=90_{L} p_{n}\left(e^{q N_{Q} / K T}=1\right) \\
& \text { CLLL WNECTLON }
\end{aligned}
$$

$$
\begin{aligned}
& J_{p}=-q_{0} D_{p} \frac{s p}{\delta x} \\
& \sum_{i} \frac{p}{x}=\frac{5}{s} \\
& \rho_{(x=0)}=p_{n o} e^{q(x=\infty)=p_{n} T} \\
& \sigma(x-\infty)=\text { ho } \quad \text { Zesonnoty }
\end{aligned}
$$

ELEC. CURRENT DENSITY FOR P-A UUNE:

$$
J_{n}=9 n p o b_{n} L_{n}\left(e^{\left.9 \mathrm{Va}_{a} / K T-\quad\right)}\right.
$$

$I) \cdot J=U \operatorname{so}\left(e^{q V / R T-1)}\right.$

ON TO PNP XSISTOR

USE AS B.C. For EQ IL.

$$
\begin{aligned}
& \text { GIVEs } \\
& \left.P(x)=p(x=0) \frac{\sin h\left(\frac{\omega_{B}-x}{L p}\right)}{\operatorname{Lan}\left(\omega_{B} / L p\right.}\right)
\end{aligned}
$$

$$
\begin{aligned}
& J_{p}=-q D_{e} \int_{x} \\
& U_{p} l_{\text {emitte }}=q p(x=0) \frac{D_{p}}{L_{p}} \cos L\left(\cos _{p}\right) \\
& x=0 \quad\left(L_{B} / L_{p}\right)
\end{aligned}
$$

$$
V_{p} \mid \text { concecten }=q P(x=0) \frac{D_{p}}{L_{p}} \frac{1}{\sin R\left(L_{0} / L_{p}\right)}
$$

Jolemit $*$ Jplcol

$$
\text { cRATOLL } H=\frac{W A}{L_{H}} \text { MUST HE A SMALL }
$$

TOTAL CURRENTILE

TOTAL CURRENT IN C:

$$
\text { CNOTHER } \beta \neq \beta ; \beta=\leq 1
$$

$$
\begin{aligned}
& \text { DEFINE } \begin{array}{r}
\alpha=\gamma \beta \alpha=\frac{\delta I_{a}}{\delta I E}(\text { WANT } \alpha=1) \\
\delta=\delta \in(1+\sigma E)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { =EMISEION EFEICIENCY OE } \\
& \text { EAGETION OF EMUTTEX } \\
& \text { CURAENT THAT IS HOLES. } \\
& B=\frac{d I_{C}(H O C E S)}{d I_{e}(H O L E S)} \\
& =\frac{1}{\cos \cos /(2)} \\
& \text { = RASE TRANSPORF LACTOR } \\
& \text { (FRACTION OF EAMTTED } \\
& \text { HOLES THAT MAKE TT TO } \\
& \text { THE } \operatorname{COL} \angle E C \text { TOR) }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{I_{E}}{a}=\left(q D_{n} n_{n} / L_{n}\right)\left(e^{\left.\frac{q R T}{R T}-1\right)}\right. \\
& +q p_{n}(x=0) \frac{D_{n}}{L_{p}} \frac{q V_{c}}{R} \text { sach } \omega_{B} / L_{p} \\
& \text { e HoLE CORRENT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { OX IPATIO OE COLLECTOR CUR\&ENT } \\
& \text { TO INCIDENT HOLE CURRENT. } \\
& \xrightarrow{n} \sum_{n}^{n} \\
& \text { ASEvME } \alpha^{+} \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { OE CONDWEELUAP }
\end{aligned}
$$

MAKE $\gamma=1: P_{p} \Leftrightarrow N_{A}(\epsilon)>N_{D}(B)$
JUCTION FET

JFET — WANT CONQUCTANCE

$$
d v=I_{d} d R \quad d r=\frac{d x}{2 Y A O_{N}} \simeq t
$$

CONOCETVITY

$$
\begin{aligned}
& y=\sqrt{\frac{2 E}{9 A_{0}}\left(V(x)+V_{0}-V_{6 S}\right)} \\
& \text { ASEuMiNo } N_{D} \ll N_{A} \\
& \Rightarrow q_{0 S}=\frac{G_{a} \omega}{L} \quad w_{w}=\text { WIDTH WITH NO POTENTIAL } \\
& *\left[1-\left(V_{0 s}-V_{0 s}\right)^{1 / 2}\right]
\end{aligned}
$$

$$
12-12-75 \text { (ERI) }
$$

FINAR: 94.m. TUES.
(HOW MANY e- IN CONO. BANO ?)

- LITTLE TWO THAE
-NO HEAT QUEUSLON IN MNSULATORS

MPURITY SEATTERING IN SEMVCONOLCTOR

(ze)
SCATTERING CROSS SEETION:

$$
S=S C A T E R M E \text { CROSS SECTION 三 } \frac{2 \pi b d b}{2 \pi \operatorname{Han} \theta}
$$

$$
F=\frac{d p}{2 t}=\frac{e^{2}}{E-R}
$$

(2)SCATTERING ANCLE SMALL
(3)ASSUME VELOCITM INMTALS
$\Delta t=2 E$

$$
T+E N=\quad \Delta p=E e^{\prime} \sum_{2} / b
$$

FOR SMALL ANELE: $\frac{\Delta M}{P}=$

$$
\begin{aligned}
\theta & =\frac{q^{p}}{p}=\frac{\Sigma^{2}}{b m v^{2}} \\
\Delta E & =\operatorname{LOSS} \ln E N E R E \psi \\
& =(\Delta p)^{2} / 2 m \\
& =2 z^{2} \rho^{4} / m b^{2} V^{2}
\end{aligned}
$$

REAL ANSWER 15

$$
\tan ^{\frac{E}{2}}=\frac{z e^{z}}{b m v^{2}}
$$

GIVES

$$
s=\left(\frac{z e^{2}}{2 \epsilon m v^{2}}\right) \frac{1}{\sin 4\left(\frac{e}{2}\right)}
$$

IN A SOLID $\triangle L E T$ MV $2 K K T$

Its 41 (STUDP SHETU)
$1 C O M D T C M E F=E 0 T$
1 THE GOHR ATOM

$2 \quad 1-0 \quad 50+\operatorname{son}^{\prime} \mathrm{S}=\mathrm{G}$

4 HARMONLC OSO
4 PHASE AND GRSUP LELCCDTES
4 Pauth Exctucion grMatiple

$$
\begin{aligned}
& \text { Q. Debads Su GuAves }
\end{aligned}
$$

9 TNTERPMETAWMEN
La A PERYUQ QAM MC

12 MTE O OPTHCAL M\&DE

$13 \quad E=E \leq T \leq T E M A \leq$

$15 \operatorname{BOLTZNALEACTM}$
$16 \quad-\square \cdot \square \quad 0 \leq 1=1+A T+O L$
$16 \quad 1 \lll$

$18 \quad \operatorname{BDC}$ CRAPAS

\qquad

- COMATON EEEECT

AESCRMPTION: A PHOTON HAVNC ENERGY $E_{1}=h G_{i}$ "COLLLOES" WTHAN ELECTRON. PART OF THE ENERGY SS b CSTTO THE NOW MOLMG ELEGTRONO THE QHOTON NOW HAS ENEREY E $\quad E_{2}=\hbar Y_{2} \leqslant E$, $H E R E_{,} L D=2 \pi V_{a}$

- THE BoHR ATOM

BQHR MALE A MQDEL OE THE ARQEQSEN I $A T O M$ TO EXRLAM ORSERVEO QUATUMEFEECTS HIS ASEUMPTIONS WERE

$$
\begin{aligned}
& \frac{m v^{2}}{r}+\frac{z e^{z}}{m e r}=0 \\
& \leq E \text { Eerces }=0
\end{aligned}
$$

$L=n B \quad \leftarrow A N G U A R$ MOMENTUM ASSUMO.

$$
E_{2}-E_{1}=h V \quad \leftarrow Q U N T I E E \text { ENEQCX } \alpha \leq S U N A
$$

THESE ASSUMRTLONS APE GOR e^{-}CIRULAR GABT

$$
\begin{aligned}
& e=E \operatorname{ECTRON} \text { ChaRGE } \\
& h=\frac{\text { PLANCKS constant=h }}{2 \pi} \\
& z=\text { ELECTRONS }
\end{aligned}
$$

or EqUNVALENTLYE $E_{n}-E_{m}=h r_{m m}=\frac{m E^{2} e^{4}}{3 e^{2}+}\left(\frac{1}{n=}-\frac{1}{m}\right)$ IONLZATION ENERGY IS GOTTON \&Y
 RH IS THE RHYDQERG ENERGY ORSERVEO.
EXPERIMENTALLY PRIOR TO LOOHRS MOREAZ

$\operatorname{SINCE} E=A V=A C+A \quad A \quad A+Q T O N \leq$
$E N E M C Y O R \quad$ EREQUENEY \quad S $A A N Y$
TIMES GUVA AS NAVELEAGTM

$$
-\frac{t}{2 n} \frac{c^{2} y}{8 x^{2}}+(v-E)+\infty
$$

$$
\frac{d^{2}+4}{x^{2}+x^{2}}+\infty=L^{2}=-2 n=
$$

 ITSOLUTLQN $S N A N \quad \angle A E A N A T E \quad W / E L D$

$$
v=\left.\infty\right|_{0} ^{\mid y=0}{ }_{0} \quad v=\infty
$$

$$
\text { EPQLTUNGTQ THE } 5 C L O T 1 Q N \quad O E \quad E R E E
$$

$Q A Q T C L E, \quad B=Q \quad A N D=\frac{n J}{Q}$

$$
\leq N C E \quad L^{2}=-2 n 5 \quad \text { we } \quad \text { HAVE }
$$

$$
E_{n}^{2}=t^{2} n^{2 \pi}{ }^{2} f m a
$$

$$
\int_{0}^{\infty}|x|^{2} d x=A_{0}^{2} \int_{0}^{10} A_{2}^{2} n^{2}, x d x
$$

$C L E \leq A=\sqrt{2}$
\qquad

A. $M E T A L \circ \quad \angle A E A \quad E E N \quad E L E C T E O N S \quad$ W THE

\qquad
Qa MOQED \quad SEM: KOMAUCTOM
M. cevovetion enNo

- DONOR MAPURT
\& ACCEPTOR MAPTATP
- VALEMEE BANO

ANOTHER GANV QCCLMS FRQM AM EXTTQA

 ABSORGTION TOUE TO MARORTHES

- SCHRO's EQ.:HARMONIC $O S E L L \angle T O R$

IN ONE DMENSION:

$$
-\frac{t^{2}}{2 m} \frac{s^{2}}{x^{2} \geq}+\frac{1}{\sin } \omega x^{2}=E \psi
$$

THE HARMONC OSCLLLATOR IS, FOR EXANPLE, AN APPAOXIMATION TO AN ATOM VNHUCH HAS A POTENTIAL SOMETHNG LIKE: ver)

EY VALENCE ELECTRONS

A TAYLOR SERLES EXPANSION AGOUT R WONLD GUE TO SECOMD OROER, A RARAGOLK. AMPWAY, SOLUTLON IN ONE OMENSION CUES HERMIE PQLYNOMLALS" ANO $E \operatorname{EEN} E R E G U E N C I E S \quad\left(E_{A}=\left(n+\frac{1}{2}\right) \hbar \omega\right.$ VELOCTTHES

$$
P H A S E \quad V E \angle O C T Y=\frac{L}{L}=V D
$$

GROUP VELOCITY= $\frac{d a}{d k}$

- pAULI ExCLUSION pRINCIPLE: NO TUO

ELECTRONS CAN OCCLPY A STATE WTTH THE SAME G GANTUN NUMEERS RERTURQEO HARMONLE DGEMLLATOR $V=12 x^{2}+\cos T x^{3} \quad\left(\gamma=m \omega^{2}\right)$ is A THLRD ORDER TAYLOR EXPANSION OE VCRJ

BRUBOUN zONES

EQR MAVES W A "OME-OMENSIONAL" SELOD, THE DUS PLACEMENT OF AN ATOM, EITHER
 CWEN \& Y

$$
Y_{n}=A a_{0}(\omega t-k n d)
$$

NOTE THAAT SUQSTITUTHON OE LS ET $K+\frac{L}{} \quad W Q U L D$ GVE THE SAME
EXACT $5 O 6 \angle T 1 O N . \quad T H A T \quad \angle S, T H E A E$

PASS THROLIG THE QLSPLACKMENTS.
THE FRESUENCY Y OE THE WLVE IS THUS PERIODLC WLTH RESDECT TO THE WAVE HUMBEA K THE LOWEST ORDER OF THUS PERNODLCLTH 15 TERMED THE BKHLLOVIN ZCNE. $\left.r a\left|A \operatorname{ma} \frac{\pi d}{\lambda}\right|=\operatorname{lon} \frac{2 K}{2} \right\rvert\,$

EIRST BRILLOVN ZONE

- DUSRERSCRN \& LRES

THE QEETHONSHMO BETVEEA Y ANOY OR EQUIVALENTLY L ANO L $1 \leq A \quad Q L S E R S L O N$ CURVE. THE $B R H L Q N H E \quad$ ZQNE $1 \leq A \quad D I S E R \leq I O N$ cuRvE.

- ERLLOWN EONE FOR UNEQUAL MASSES MODELED AS:
-10
$-\operatorname{cosen}-(1) \operatorname{tara}-\infty$
PRODUCES A ERLLOLNN TENE :

THE ORTLCAL MODE VMRATES LKETHLS:

IT PROLVCES A DRDOLE MOMENT.
ATTENUATION (EVANASCENCE)
IF A CRYSTAL IS EXCITED AT A EREGUENGY NOT ALLOWEL FOR ON THE DISRERSION CURUE, IT IS ATTENUATED CORIN THE EVANESCENT MOLE)

- TRANSMLSSNX LLNE EQUUVALENTS

QNE DMENSIONAL EAYSTALS $A C E$ MATEEMATVCALLY AKLU TO TAANSLYSEVON LINES. THATHS YOU GET DUSEERSMON CURVES EOQ EQTHG FOR THE TWQ MASS MASS CASF THE TRANSMSSEION LINE $E Q U H A L E A T$

15

usi $i_{2 A}=A_{2} e^{b}(4 t-2 n k+x)$

 $S E T T H C \operatorname{dat} \square=\infty \quad a_{0} \leq$

- DLSPERGMN CuRyE EaR 1 D LATTMEE

$$
\begin{aligned}
& F_{z n}=U_{1}^{\prime \prime}\left(Y_{2 n-1}+Y_{2 n+1}-Z Y_{2 n}\right)=M_{=} \frac{d_{z}^{2}}{z_{z}} \\
& F_{2 n+}=V_{2}\left(Y_{2 n}+Y_{2 n+2}-2 Y_{2 n+1}\right)=A_{0} d Z Y_{2}=n
\end{aligned}
$$

$A S S U M E \quad S O L U T O M S=$
 $\left.A,(M, L)^{2}-2 U^{\prime \prime}\right)+2 M+Q^{\prime} C Q+\frac{K Q}{Q}=C$
$\operatorname{dot} 1=0 \quad \infty \quad 1+\leq$

$$
L^{2}=U^{2}\left[\left(\frac{1}{M}+\frac{1}{M}\right) \pm \sqrt{\left(\frac{1}{M}+\frac{1}{M_{a}}\right)^{-2}-\frac{4 L_{1}^{2} L_{2}}{L_{2}}}\right.
$$

INTEPQETATION OE 1.0 LATTICE DISPERSION CURVE IHE DUSEERSVON CURUE RELATICUSHDP

MAY \&E REWQTTTEN AS:

$$
\omega^{2}=\frac{U_{1}}{M_{2}}\left[M_{1}+M_{2} \pm \sqrt{M_{2}^{2}+M_{2}^{2}+2 M+M_{2}+Q_{0} \sum_{d}}\right.
$$

WLOG, ASSUME THAT M, $>M_{2}$
EOR LONG WAVELENGTHS, $\lambda \gg d$ ANOK $\leqslant \leq \frac{1}{d}$

$$
\Rightarrow c a k d \leq 1-\frac{k^{2} d^{2}}{2}
$$

$$
\Rightarrow \sqrt{M_{1}+M_{2}^{2}+2 M_{1} M_{x} \operatorname{Cos} K D}=M_{1} M_{2}\left[1-\frac{R, M_{1} M_{2}}{B M_{1}+M_{2}}\right.
$$

$$
w_{0}=k d \sqrt{\frac{L_{1}}{2\left(1+\mu_{0}\right)}}
$$

$$
\left.u_{L}=\sqrt{2 u^{\prime}(t+4)}-\frac{1+2}{4+1}+\pi / 2\right)
$$

AT THE EORQMDEN ZONES

+ bin $k d / 2 \geq 1$

$$
\begin{aligned}
& k d=\alpha+i B
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=0, \Rightarrow 1<=\alpha<d
\end{aligned}
$$

a pertureathon
SCHRCDHAGERS EON IS:

$$
\text { ah } \frac{b z}{S E}=H y=E . y
$$

ADE a certureatuon $\quad a$:

$$
a h \leq t=(H+v) \psi=\left(E_{n}+E^{t}\right) \psi
$$

WHTCUT PGETVREATION:

$$
z=\sum_{n} a_{n} e_{n}(x) e^{-k \varepsilon_{n} t / \hbar}
$$

ALUG $N T O$ RERTURQED $5 Q$ RECQCMSEMC
ORTACNALTTY OF YTGTHY E EMES

$$
\begin{aligned}
& \alpha=c A L \quad \quad q_{5}+q_{4} d x=E_{2} b A=
\end{aligned}
$$

$T H E A A T Q X E L E N E N T, V \operatorname{Vaghta}$ COLPLME TYPE NUMQER ANA $E A N$ $B E M E A S L R \leq D \quad E X P E R N E A Y A L L Y$
 $\frac{S Q}{S E}=\frac{1}{4} a_{n} \operatorname{Von}$
\qquad

- ElEctaONS ll A soln

$$
\begin{aligned}
& \text { b o } 0 \\
& 0 \quad 0 \quad 0 \\
& 45 \operatorname{com}=\quad a=e^{-i n t} \\
& \text { tw } a_{s}=a_{s}=\sum_{n} a_{n} L_{s} \\
& E_{0}=v_{5}+Q_{5}=E_{0} a_{5}+v_{s, t} a_{5+}+V_{5,5,} a
\end{aligned}
$$

ASEOME E WMP OUR TO GDNACELT ATOMS:

$$
\begin{aligned}
& E_{5}+E_{0} a_{s}-v_{s} a_{y}-v_{s} a_{0} a_{0} \\
& \left(E_{0}-\varepsilon_{0}\right) a_{s}=-v_{0}\left(a_{0}+a_{s+1}\right)
\end{aligned}
$$

LET $a_{s+n}=e^{i k n d} \quad, a_{s-n}=e^{-k k n d}$

$$
\Rightarrow E=E_{0}-2 v_{1} \cot k d
$$

AT K NEAROLDRKd=1- $\frac{k^{2}}{2 L^{2}}$

$$
=E^{2}=E_{0}-2 Y_{1}+V d^{2} R^{2} \leq \text { poRQDOLA (HARMON OSO) }
$$

RECALA TEAT EOR AR ELECTROU UN EREE SPACEZ

O ELECTRONS UN A TOLIO: OPTICAL MODE
THE $\angle A S T E F=O B T W \angle S$ AN APRNOKMMATROM
 IF YOL $45 S E E$ ELECTREMS CAN ULLA LDAGONALLY

 Ca

- MLLER MDLEES

TO SEECNE OMRECTIOLSNNL N CRYSTAL YOU VSE MVLEN \quad UNVCES.

 AERVOQ $\quad \angle E Q \quad T K=N \quad T+E$

-
a 90
$0 \mathrm{O}-\mathrm{a} \mathrm{E}$
WTEMロ 4 B:ON
s

$B A N D \quad H A P E O E E X E$ $O E A$ AHOTON WTQ $\angle L E F S$

$7 \mu L \leq$ \qquad ce

- EFEEETMYB MLSS

$$
\begin{aligned}
& v_{y}=\frac{d u}{L} \quad \frac{d v e}{d z}=b_{0}=x^{x}=\leq
\end{aligned}
$$

$$
\begin{aligned}
& F_{Y}=9+5 S=y^{2} \\
& F_{y}=-9 v_{y}=n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& n(X+Y)=610(x-7)
\end{aligned}
$$

$$
\begin{aligned}
& 0-10 \leq \\
& x-9+4, \square
\end{aligned}
$$

a AGSORBTION MEASUREMENT

4
6
8
8
0
0

ACCETMAS
\qquad

V BOMORS

$$
6 x \operatorname{ToM} \text { QHHWL}=6
$$

$$
5 N H T+T
$$

EGINOINE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& n=y \text { ELEETGONS IN CONDUCTION BANO } \\
& p=+H O L E \quad \text { IN } V A B E N G=\quad G A M D \\
& n(E)=f(E) \&(E) \Rightarrow \cap(E)=M C E /(E) \\
& \mathcal{C E}=F E R M 1-O U A C \quad Q 1 S T R 1 Q Q T 1 O N \\
& =D\left[E^{-} H A S E N E M E Y E\right]
\end{aligned}
$$

$$
\begin{aligned}
& n=\int n(E) d E=\int A(E)+(E) d E
\end{aligned}
$$

$A S S U M P T O A S " 1 . T H E E M A L E Q U A G B R C U M$ 2. PAULHS EXCUUSIGN PANCMALE
\qquad
\qquad

$$
B O L T E M A N B A C T Q R
$$

\qquad

$$
M_{A}=M U M E R \text { OE } e^{*} S \text { WHY ENEREY }
$$

$$
\frac{T_{2}}{r_{1}}=B^{\Delta E / R T}=B O L G M A N \quad E A C T Q R
$$

- FERM- DIQAC DLSTR GUTION DERLAATMA

$$
p(\operatorname{seten} T]=f(E) P[E \rightarrow E+\Delta E][1-f(E+\Delta)]
$$

$$
\begin{aligned}
& p\left[\begin{array}{c}
\text { auput }]=f(E+\Delta) P[E+\Delta E \rightarrow E][1-f(E)]
\end{array}\right. \\
& \text { EQUATMS GLUES } \\
& \frac{R E E-E+B E S}{P E E D}=\frac{f(E+\Delta)}{f(E)} \quad[1-f(E)] \\
& =e^{-\triangle E / K T}=\text { BOLTZMAN FACTOR }
\end{aligned}
$$

SOLVING EQR $f(E)$ EVES

$$
f(E)=e^{-E-E p / Q+1}
$$

- $n(E)=$ WHECTRONS WMH ENERGY E

$$
=p\left[e^{-} c A N \text { HAVE ENEREX } E\right] d \not Z
$$

dNa NUMRER OF QONES TO RUT E WTO

$$
n(E)=f(E) d n
$$

RECALL THAT FOR AN WFINATE WELZ

$$
E_{n}=n^{2}\left(\frac{r^{2} \pi^{2}}{2 n L^{2}}\right) \Rightarrow n=\frac{\sqrt{2}}{\sqrt{2}}
$$

 FOR THREE DIMENSIONS $\quad d 2^{(3)}=\frac{1}{s}\left(4 \pi^{2} d n\right)$. (SUREACE AREA OE A SPHERE)LTHE LE $1 \leq$ QUT U TO SHNGLE OUT THE
FIRST OCTANT. ANYWAH, THLS GLVES

$$
\begin{aligned}
& \left.d n^{(3)}=() \sqrt{E} d E=C\right)=\operatorname{constan} T \\
& n(E)=f(\&) d n^{(B)}=\operatorname{const} \sqrt{E}\left(\overline{e^{k}+E=1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E E E E G T H E \quad D E N=1 T Y \quad C E G T A T E=
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{consT} \quad \int_{E}^{\infty} \frac{\sqrt{E} E E}{1+E E G K T} d E
\end{aligned}
$$

$$
\begin{aligned}
& P=+\angle W E \square V A E L E N C E \quad Q A N D
\end{aligned}
$$

$$
\begin{aligned}
& =N_{y} \&-\left\langle E_{P}-E_{C}\right) / L T \\
& M A S S=A C T M E A B C \\
& n p=N a N Q^{\cdots(E-E V D / K T} \\
& \cdots M_{y} \leq \operatorname{ME}_{y} / \mathrm{E}_{7} \\
& E_{E}=E N E M E y \quad G_{B}=E=E=E
\end{aligned}
$$

MPURIYY DLSTRIDSTMSA FOMOTION
EGR DONORS
$A S S U M E$ I $E L E$ OM OOMOL

$E+=P[D O N G H E A S \quad N O E L E T M O A T$

$M_{D}=+E C L O L E T Q M S$
ALLOWHE FGR QEGUNEACACY

$$
\begin{aligned}
& B+A A^{\circ}=Q^{2}-
\end{aligned}
$$

- EFEECTS OF DOPNG ON EERMI LELEG
 $=U_{0} e^{-\quad(E c-E E) / K T}$ $N_{0}=$ mumes a ow denors

$$
n=N_{D}-N_{0}^{0}
$$

 $\delta=\square E G E M E M A C$

\qquad

$$
\begin{aligned}
& \text { SDECHFIC HEAT } \\
& a C_{V}=\left.\frac{G E}{6 T}\right|_{V}
\end{aligned}
$$

CLASSMCALLY, W A GAS $E=$ SNKT $\Rightarrow C_{K}=3 N K$

- FORA HARMONIC oscillator

$$
\begin{aligned}
& E_{n}=\left(n+\frac{1}{2}\right)+1 \infty \leq 5 Q L N \text { of SCTBOOL EQN. } \\
& N_{n+1} / N_{n}=e^{-\left(E_{n+1}-E_{n}\right) / K T} \in \text { BOLTEMAN FACTOR } \\
& =e^{-\hbar \omega / K T} E \text { EOR HARMONIE OSE/LLATER } \\
& \langle n\rangle=A V E+\text { OF QUANTA IN ASTATE } \cap \\
& =\sum_{n=0}^{\infty} n e^{-n+w / M T} \sum_{m=0}^{e} e^{-n T w / K T} \\
& =\overline{d(\hbar / K T)} \sum_{n=0}^{\infty} e^{-n / \omega / k T}<\sum_{n=0}^{\infty} e^{-n \hbar \mu / K T} \\
& \sum_{0}^{\infty} e^{-n \hbar \omega / K T}=\frac{1}{1-e^{-h u / K T}} \leqslant \text { FROM E of GEOMENKN SERES } \\
& G U E S \quad\langle N\rangle=\frac{1}{0+\pi / R T-1} \leqslant F O R \quad B O S O N S
\end{aligned}
$$

 NOTE, EOR SMALL T, $\langle N\rangle=K T / K E$

$$
\langle E\rangle=\langle\cap\rangle T u=k T E C H S S \in A R E S D T
$$

SENERALLY: $\langle E(\omega)\rangle=\frac{e^{M E L G}-1}{M-1}$

$$
\Rightarrow C_{V}=\left.\frac{\delta \zeta E\rangle}{S T}\right|_{V}=N K\left(\frac{\hbar \omega}{k T}\right)^{2} \frac{e^{\hbar G / K T}}{(E \hbar \omega / k T-1)^{2}}
$$

II SAECIFIC HT (MAR. OSE.DEEN)

- $D=B Y E$ Moos
$\langle E\rangle=t \omega\langle n\rangle \Rightarrow E_{\operatorname{Hos}}=\int \hbar \omega\langle n\rangle\left(\frac{d n}{d E}\right) d E$ $\frac{62}{S E}=$ DENSITY OE STATES DEBYE ASSUMEO

(2) $W=V K \Leftarrow L W E A R$ OISPERSION CORVE:
(3) WL = MAXMUM EREQUENCY = DERPE FREQUENCY

$$
\begin{aligned}
& E=\int_{0}^{\omega_{0}} \frac{\pi \omega^{2}}{2 T^{2} V^{3}} \theta_{0 / T}\left(\frac{\pi \omega}{e^{3} d x}-1\right) d \omega \\
& =\frac{3 I k^{4} T^{4}}{T^{2}} L_{0}^{0} / \frac{x^{3}}{e^{3}} \frac{e^{3}}{e^{x}} \\
& \theta_{0}=D E B Y E \text { TEMRERATURE = } \frac{\hbar \omega}{k} \\
& C_{y}=9 N k\left(\frac{T}{\theta_{0}}\right)^{3} \int_{0}^{\theta_{0} / T} \frac{x^{4} e^{x} d x}{\left(e^{x}-1 z\right.} \\
& \simeq \frac{12}{5} \pi^{4} N K\left(T / 0_{0}\right)^{3} \text { FOR SMALLT T }
\end{aligned}
$$

- ELECTPON COMTRMEUTION TO SQECHELE HEAT

$$
C_{L A S S L C A L Y: ~}^{E}=\frac{2}{2} K T N \Rightarrow C_{N}=\frac{3}{2} E T
$$

THIS DONT WORK OUT TO WEBLDUE

$$
\text { To PAvLY } E \text { EXLUSLON PRUNCLPGE: }
$$

$$
\operatorname{decat} \quad E==\frac{\hbar^{2}}{2 \pi}(3 \pi z)
$$

$$
\frac{d x}{d E}=\frac{Z}{2}=\left(\frac{x}{1,}\right)^{z / 2} \sqrt{s}
$$

$$
\Delta E=A M A E D E \text { ITATES }=\int_{E}^{\infty} E p_{E D}(E) \frac{d \lambda}{d E} d E
$$

$$
-\frac{H}{4}=N k^{T Z} T_{F}
$$

$$
w+R=\quad T_{F}=E_{E} R_{k}
$$

$$
\Rightarrow C y=\frac{d \Delta E}{d}=\frac{\pi^{2}}{2} N K T K
$$

\qquad

II CYLELETRON CONTRVE UTIEN

$$
\begin{aligned}
& \begin{array}{l}
\sum_{E} E_{F} \\
L_{5}
\end{array}
\end{aligned}
$$

RGGQUROB SOLUTLON TO SNMPLE HARMONE OSC.

$$
\frac{b^{2} y}{b}=25 \frac{5 y}{b}+(e-1) y=0
$$

$$
E=(n+=\sqrt{n} a
$$

SOLA IS TUEN HERMTE POLYAOMMLS:

$$
V=H_{n}(s)=(-1)^{n} e s^{2} \frac{d^{n}}{d^{n}} e^{-s^{2}}
$$

$$
\text { THE wavE FUNCTION is: } \not H_{0}=\operatorname{ta}_{0} e^{-8 \pi / 2}
$$

OHERMTE POLYNONMLS ANO WAVE FUNGT:ON

$$
4, C g)=2 \xi
$$

$\left.\left.\operatorname{ta} C+=)^{3}\right)^{3}-12\right\}$

$$
\frac{d H n C s}{f \&}=-\sqrt{5}+\infty(5)
$$

$$
Z_{n}=H_{n} e^{-5 z^{2} / 2}
$$

$$
\int_{-\infty}^{\infty} H_{n}^{2} e^{-\sum^{2}} d_{n},-\int_{-\infty}^{\infty}\left|\Psi_{n}\right|^{2} d \sum_{n}=\sqrt{\prod_{n}} 2^{n} n n^{n}
$$

$$
\begin{aligned}
& H \times(q)=1 \quad H 2 C \xi^{2}=4^{2}-2
\end{aligned}
$$

$$
\begin{aligned}
& G \nu=s: \quad \frac{\left.b^{2}-\right\}}{8}+\left(\varepsilon-s^{2}\right) \psi=0
\end{aligned}
$$

- MATEIK ELEMENT
$\langle n| V|m\rangle=\int_{-\infty}^{\infty} \psi_{n}^{*} V \quad \% m d \leq$
$V=$ PERTUREETION
EERMIS GOLOEN RULE
SCROS EQN (TME OEPENOENT) $H Y=\frac{1}{T} \frac{5 \psi}{S t}$. PERTUQB WITH A AGTENTHALV

$$
\nsim=\sum_{n} a_{n}(t) \phi_{n}(t) e^{-i \pi / E_{n} t}
$$

$\psi=p a r T u R E E$ WAVE EVNCTION
$q_{n}=$ UNPERTUREEQ WAVE EUNCTION
GVES: $\frac{S_{2} a=}{\delta t}=\frac{-2}{\hbar} \sum_{n} a_{n} V_{s n} e^{i / n}\left(E_{s}-E_{n}\right) t$
WHERE $V_{S N}=\langle S| V|n\rangle$
ASSUMPTIONS:
(1) $\Delta a_{s}(t) \simeq 0 \Rightarrow a_{n}(0)$
(2) V IS TIME MDEDENDENT
(3) SYSTEM HNTLALY, IS W STATE $A \Rightarrow a_{M}=1$

$$
\begin{aligned}
& =-V_{s N}\left(e^{\left.s t-E_{s}-E_{N}\right) t}-1\right)\left(\left(\varepsilon_{s}-E_{n}\right)\right. \\
& \left|Q_{S}(t)\right|^{2}=P_{S}=P[D F B E N G W G T A T E S A T T] \\
& \left.=4\left|V_{S N}\right|^{2} \min ^{2} L^{2} a_{a}\left(E_{S}-E_{n}\right)^{2} C_{S}-E_{n}\right)^{2} \\
& \left.P(t)=\sum_{s}(t) \cong \int_{s} 4\left|V_{s}\right|^{2} \sin ^{2} C\right)^{2} \quad D\left(E_{s}-E_{n}\right) d\left(E_{s} t_{n}\right.
\end{aligned}
$$

OVER AEGION OF MTEREST $P\left(E E^{-} E_{n}\right)$

- DENSITY OE STATES O (EX)

$$
\frac{d P(t)}{d t}=\frac{2 \pi}{\hbar}\left|V_{S N}\right|^{2} P_{D}\left(E_{n}\right)
$$

RUTHEREORD SCATTERUNE

$$
\sqrt{\bar{Z}} e^{\frac{i}{\hbar} \vec{p} \cdot \vec{x}}=\psi_{i} \quad \text { pFRTUGCATON }
$$

OUE TO ENERGY CONSERVGTION $|\vec{p}|=|\vec{p} \cdot|$

$$
\begin{aligned}
V_{n} & =\frac{1}{Z} \int V(x) e^{i / \hbar}(\vec{p}-\vec{p}) \cdot \vec{x} d^{3} x \\
& =\frac{1}{Z} f[V(x)] \in E Q U R E R \text { TAANSECR }
\end{aligned}
$$

$d \sigma=F R A G T I O N$ OF PARTICLES GONG WNTO Ω

- For a coulome potential

$$
\begin{aligned}
& V(r)=z e^{z} / r
\end{aligned}
$$

$$
\begin{aligned}
& =\pi \hbar^{2}=2 \quad 4 \rho^{2}=\frac{\pi}{2} / 2
\end{aligned}
$$

- heat Difeusion EqN.
(1)

$$
\begin{aligned}
& \text { RADIAL OFFUSION } \\
& \text { USE OYGMNDRIGAL COOR: } \square=
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{S T}{S T}=\frac{S T}{S E}=Q \\
& L E A E S
\end{aligned}
$$

$$
\frac{D c}{1 a} S T / b t=-0=T
$$

$$
\text { GUES } \quad T_{t}=c e^{-u 2 e T / e c} T_{r}=A,(u) J_{0}(r u)
$$

$$
\text { or } T=T_{R} T_{2}=A(u) J_{0}(r u)^{\prime} e^{-v^{2} / R T / e e^{2}}
$$

BOUNDRY CONDITIONS: T(r, O) $=T_{0} e^{-r^{2} / 2 r^{2}}$

NoTE: @ $=0, \frac{k k T}{\square 0}=1 \Rightarrow 2 k T=r_{0} \equiv 0 c$

$$
\begin{aligned}
& \Rightarrow e^{-r^{2} / 2 R^{2}}=\int_{0}^{a} A(U) J Q(U N) d U \& H A N L L E \text { XEORM } \\
& \left.\Rightarrow A(u)=\int_{0}^{\infty} r d r e^{-r^{2} / r^{2}} \operatorname{Le}(U)\right) \\
& \Rightarrow T(r, t)=\int_{0}^{\infty} u d u \int_{0}^{\infty} x d x J_{0}(u x) e^{-x^{2}} d \\
& \times e^{-u=k T / \rho e} \text { boCur dr }
\end{aligned}
$$

$$
\begin{aligned}
& V^{2}=\sqrt{8} \frac{5 T}{b}
\end{aligned}
$$

(2)
\qquad
BOUNDRY CONDITION

$$
T(0, t)=70,<(z-z)
$$

$$
\begin{aligned}
& T(0, t)=\int_{0}^{\infty} A(G) \cos u \leq d u<=F O L R E R \quad \cos M \\
& \Rightarrow A(U)=\frac{2}{7} \int_{0}^{\infty} T(0, \geq) \cos (U \leq) d
\end{aligned}
$$

$$
\begin{aligned}
& D E E U S I C N \quad N \quad D R E C T I O N \\
& \frac{d T}{d E}=0, \quad \frac{S T}{S}=0 \\
& \text { USING SERERATION OE VARLABLES } \\
& \frac{1}{T z} \quad S_{z}^{2} T z=-U^{2}=\frac{1}{T} \frac{\delta E}{S} \frac{S T}{S} \\
& \text { GIVES: } T(E)=A(0) \text { cov } u=e^{-02 / T T C c}
\end{aligned}
$$

TWOSTATE QUANTUN SYSTEMO

$$
H=H 0+V=A B N H T B N H A
$$

$$
\left.\theta_{0}^{2} \operatorname{son}+0 \quad H_{0} \quad \psi=a p_{a} e^{i \omega_{0} t}+b p_{b} e^{-i \omega_{0} t}=2 / a\right\rangle e^{-i \omega_{a} t}+b / b_{j} e^{-i a_{p}}
$$

$$
A S S U M P T 1 C N S: O O=a(t), b=b(t)
$$

(b) $\left.a\left|+|\vec{a}|=\langle a| E_{b}\right| H\right\rangle=E_{b} b_{a}$
(3) $V_{a-}=V_{b}=2 ; V_{a b}=V_{b}+$

WE THEM HAVE:

$$
\left\{\begin{array}{l}
\dot{a}=\frac{-k}{F} b \quad V_{a} b=i \omega_{0} t \\
b=\frac{2}{k} a \quad V_{a} \quad e-i \omega_{0}
\end{array}\right.
$$

- POLARI $A T 1 O N: P_{x}(S T E R Q Y$ THTE $)$

$$
0 \in C A Y: \quad \frac{d T b}{d E}=p_{p} a_{b}
$$

$$
a_{b}=a_{b c} e^{-t b b} \Rightarrow b_{b}=p_{-}
$$

$$
\Rightarrow x_{b}=\sum|<\dot{x}| v|b\rangle \mid
$$

$$
\begin{aligned}
& \left.\langle a| H_{0}+V|2\rangle\right\rangle=\langle a| H,|a\rangle e^{-i \omega \omega^{2}} \times a+\langle a| v|b\rangle e^{-i \omega b^{2}} x b
\end{aligned}
$$

- bolteman transport Equation SIX-AMENSIONAL (\vec{x}, \vec{v}) OR (\vec{r}, \vec{k}) EROBEQLLTH OISTRIRUTION VARYING IN TIME

$$
\vec{v} \cdot \vec{\nabla}_{r} f+\vec{a} \cdot \nabla_{v} f=-f-f_{0}
$$

or $\frac{1}{\hbar}\left(\nabla_{k}\right):\left(\nabla_{r} f\right)+\frac{E}{f} \cdot \frac{1}{V} f=-\left(-f_{0}\right) / g$

$$
E=k^{k} k^{2} / 2 m+\quad, \quad=k_{m} t
$$

$$
\begin{aligned}
& T=\text { TIME CONSTANT } \\
& f_{0}=\text { KNOWN OUSTREUTION } \\
& \text { 1-D D.C. OISTURBANCE } \\
& f=f_{0}-T\left[V_{x} \frac{b t}{\left.\frac{x}{x}+a_{x} \frac{s t}{\delta v_{x}}\right]}\right. \\
& \text { - CURRENT DENSITY: I } x \\
& J_{x}=-e^{E V_{x}=-e^{x} \int f V_{x} d V(t)(A N)}
\end{aligned}
$$

$A L C$ KNOWN TO ARE EVEN WRT V \Rightarrow It $\vec{v}=0$

$$
\Rightarrow J_{x}=e \int_{-\infty} \int_{x}\left(v_{x} \frac{S L_{x}}{\delta x}+a_{x} \frac{\delta t_{x}}{\delta v_{x}}\right)_{x} d v_{x} d u^{2} d v_{z}
$$

- THERMAL CURRENT DENSTY: $C_{x}\left(\frac{W A T T}{m a}\right)$

$$
\begin{aligned}
& C_{x}=\iiint_{1} f v_{x} \varepsilon d v_{x} d v_{y d} v_{z} \quad \text { LFOR FREE es } \\
& =-\iiint x\left(v_{x} \frac{5 f_{0}}{S x}+9 x \frac{S t_{0}}{\delta V_{x}}\right) u_{x} E d v_{x} d u_{y} d u_{0}
\end{aligned}
$$

- FOR MAXNELL-GOLTEMAN DISTRUOUTION (MEGAG $f_{0}=n\left(\frac{\infty}{s T k T}\right)^{3 / 2} e^{-m v z z k T}$

$$
\left.I_{0}=\Lambda_{-\infty}^{\infty} e^{-m v_{x} b / z} v_{v}=\sqrt{\frac{2 \pi}{b}} ; I_{d}=()^{\infty}\right)^{d} \frac{s}{d} I_{0}
$$

GIVES $d_{x}=n e t \quad \delta(E)+n d=a$

R AssuMED GOLST

$$
\begin{aligned}
& \operatorname{CONOURTVITY}
\end{aligned}
$$

$$
\begin{aligned}
& =T H E R A L Q \quad \operatorname{CONDOCTHVTY} \\
& \frac{1 L^{2}}{2-7}=5 k z<2
\end{aligned}
$$

THERMAL ELECTAPC-+UXELOUS, (NQE)
$\angle U E \quad$ YO T $O L F E F Q E N G E$
\qquad

TEST H STFNAC) STUDY SHEET.

1. bano structure Calcuration
BORN-OPPENHEMER|HARTRE.EOCRI LCOA
2. BLOCH FUNET:ONS
3. K-P APPKOXIMATION
4. BANO TO BANO TRANSITION
5. LIGHT ABSORBTION (REER INOEX
6. ABSORETION COEEEHCIENTS
S.P-N JUNCTION
7. NPN BUT
8. NPN BJT (CONT)
9. JFET
10. IMPCRITY SCATTERNNE

- BAND-STRUCTURE CALSULATION

ACTUAL HANHTONLAN:

© CORNOOPEENHEMMER APRQOXMATHON
SEAARATE ELECTRONLC S WIERATHONAL MOTHON

$$
\begin{aligned}
& \Rightarrow E_{e}=\sum_{0} \varepsilon_{d}+\frac{1}{2} \sum_{d} \phi_{\infty} \phi_{d} V_{d} \phi_{d}: V_{\alpha}=\frac{e_{k} V_{d}}{V_{0}} \\
& \text { GOOD EOR QHGY ONE ELECTRON: }
\end{aligned}
$$

- HARTREE - EOCH ARRROX (SLATER DE TERMMNENT)

 HARTREE ECCH MCYLDEO EXCHANGE TERMS:

$=\sqrt{2}\left(q_{(}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)-\phi_{1}\left(x_{2}\right) \rho_{2}\left(c_{1}\right)\right) \in N=2$
$\phi_{1}\left(x_{1}\right)=\phi_{1 \operatorname{csacs})}\left(x_{1}\right) \phi_{1 \operatorname{csan})}(m= \pm \pm)$
WSH TO OESYMMEPEQUEE WAUE EUMETHON

- linear comennation ede orbitals

BLOCK FUNCTIONS (ELECTRON MN A CRYSTAL)

PERIODIC PROPERTY: $|H E(x)|^{2}=\left(H R^{2}(x+a)^{2}\right.$
 $=e^{x \frac{5}{5}} \psi\left(x_{0}\right)$

$$
\mathcal{U}_{\overrightarrow{2}}\left(\vec{x}+\overrightarrow{x_{0}}\right)=u_{k}(\vec{x}) \leqslant \vec{b} \cdot \vec{k} \leqslant N_{0} \leq-\infty
$$

- KOP APPROXIMATION (OSNE BLOCK FUNCTIONS

APPLICATION TO GERMANIUM (CREST GAPGMALLVE)

$$
b_{t} a_{b}=a_{c} b_{c}+a_{v} u_{v}
$$

$$
=\sum_{i=1}^{4} O_{i k} U_{i}
$$

dur function twa functions

Drape MoMENT
FOR $\operatorname{smALE} K_{y}, U_{i}-U_{j} \quad \beta=\left\langle U_{i}\right| \rho_{x}\left|U_{j}\right\rangle=$ MARA ELENA
oNEs $\left|\begin{array}{cccc}E_{c}-E(\vec{k}) & k+p & k+p & k_{z} p \\ k_{x} p & E_{V}-E(B) & 0 & 0 \\ k_{y} p & 0 & E-E(K) & 0 \\ k_{2} p & 0 & 0 & E_{x}-E C \vec{E}\end{array}\right|$

- BAND TO BAND TRANSITLON (NON-OGEENERATE)

$\hbar w=E_{c}\left(k^{\circ}\right)-E_{v}\left(s^{\circ}\right)$

 - MatRIX ELEMEUT:

OIRECT KEITION DREGYRITION

- ABSDRESD GGQTONS = INCIDENT PHOTONS $\times e^{\text {E }}$

AL LOWEO: $\alpha=\frac{2 \times 10^{5}}{r}\left(\frac{2 m^{3}}{m^{2}}\right)^{2} A\left(t u-E_{\infty}\right)^{\frac{1}{2}}$

 3 QADEAS QEMAC OEEEREACE MM OS

$$
\left.\frac{E_{2}}{E_{0}} \right\rvert\, \frac{r_{2}}{}
$$

$E \infty+p o d a n=E C$
$H A \geq$ estarteeo
 FOR ANINS (SEMMCONO): $4 N \gg 1$

$$
\begin{aligned}
& \text { K = PERMTTUTY, } \quad \text { GOELECTRM CONSTAAT: CO TGE }
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{1}{\sqrt{2}}\left[E+\sqrt{E^{2}+G^{2} q^{2}}\right]^{2} \quad \gamma=\sqrt{1-6} \\
& \text { CEER } A G S O R C T 1 O N: d I=-\infty(1-\Gamma) I d x
\end{aligned}
$$

- ABSORETION COEFFICIENTS

INAIRECT TRANSITIONS:

- P-N JUNGTION
 $n_{p}=n_{n} e^{-E V_{D} T} \quad \underline{E S} \rightarrow n_{p}=n_{n} e^{-\left[6\left(v_{6}+v\right)\right] / k T}$
$p_{n}=p_{0} e^{-e c_{d}+v_{b} / R T}$

$J=\operatorname{cons}+\left[\left(n_{p}+p_{n}\right)\right]+\left(n_{a}+p_{p}\right)=J_{\text {so }}\left[e^{\left.q V_{k T}-1\right]}\right.$

- PNPEUT TRANSISTOR

$A S S U M P H 1 R N S=A$ ACRDPT DEPLETON LAYEN

(4) LOW $G E V E \operatorname{LN}$ I $E \in T I O N$
efh ownsupt

 $-x<E \leq 5$

\therefore ISURENT EQ: FROM BOLTEMANXPORTEQ.

$$
V \leq=M M T C A=
$$

$$
=0-(N+N) \quad 1=1
$$

MMPURITY SCATTERING IN SEMI SONDUETOR

($5 M A L \angle E A T T E R A N G L E$
(3) NITVAL VELOCITY=V

$$
\Rightarrow \Delta p=z=Z_{b V}
$$

SMALB ANEE $\frac{D P}{p}=S=\frac{Z^{2} e_{2}}{b m_{2}}$
REAC ANSWER IS

[^0]:

[^1]:

 OF EREE NUETRAL
 ATOMS MOUE TOWARDS

 $$
 \text { घกロリ } \exists+I
 $$

 $$
 \text { SNOLDNIVQO dQENT } 79 \text { It I\# STOOT NYHI }
 $$

 $$
 \begin{aligned}
 & \text { EHGH OTHER (W A MENTAL PICTURE), } \\
 & \text { THE WAVE FUNCTIONS OHERLAR. ONE }
 \end{aligned}
 $$

 OF THE BWDER ATOM'S WAVE EUNCTIONS
 LEVELS.
 ATOMS
 TO GUE TWO

 SNOILHN/日woo

 $$
 =A I d O D N O=3 T d W X \equiv N \theta \quad S \theta
 $$

 If

 $$
 \text { ONLACSED } \exists+42 \text { SEIGOWOS aN甘 }
 $$

